Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

Crop wild relatives (CWR) can provide one solution to future challenges on food security, sustainable agriculture and adaptation to climate change. Diversity found in CWR can be essential for adapting crops to these new demands. Since the need to improve in situ conservation of CWR has been recognized by the Convention on Biological Diversity (CBD) (2010) and the Global Strategy for Plant Conservation (2011–2020), it is important to develop ways to safeguard these important genetic resources. The Nordic flora includes many species related to food, forage and other crop groups, but little has been done to systematically secure these important wild resources. A Nordic regional approach to CWR conservation planning provided opportunities to network, find synergies, share knowledge, plan the conservation and give policy inputs on a regional level. A comprehensive CWR checklist for the Nordic region was generated and then prioritized by socio-economic value and utilization potential. Nordic CWR checklist was formed of 2553 taxa related to crop plants. Out of these, 114 taxa including 83 species were prioritized representing vegetable, cereal, fruit, berry, nut and forage crop groups. The in situ conservation planning of the priority CWR included ecogeographic and complementarity analyses to identify a potential network of genetic reserve sites in the region. Altogether 971,633 occurrence records of the priority species were analysed. A minimum number of sites within and outside existing conservation areas were identified that had the potential to support a maximum number of target species of maximum intraspecific diversity.

Til dokument

Sammendrag

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years. The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P. The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries. To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country. The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

Til dokument

Sammendrag

Norway is the largest sheep meat producer among Nordic countries with more than 1.3 million lambs and sheep slaughtered in 2017. The sheep industry is limited by the need for in-house feeding during the winter months. In summer, Norwegian sheep are mainly kept on rangeland pastures, with sufficient feed for almost double the current sheep population. Lambs are slaughtered over a three- to four-month period from September to December with a peak in September–October, providing a surplus of lamb, much of which is subsequently frozen, followed by eight months during which fresh produce is in limited supply. Norwegian consumers eat an average of 5.4 kg of sheep meat per person per year, much of which is purchased as a frozen product. The Muslim (4.2% of the population) preference for year-round halal meat, with an increased demand on the eve of the Muslim meat festival (Eid al-Adha), has the potential to boost demand, particularly in Oslo. This paper provides an overview of the Norwegian sheep farming system, the current market value chains, and the potential to meet the demand for halal meat in Norway (specifically during the Muslim meat festival—Eid al-Adha) to the advantage of both consumers and sheep farmers.

Sammendrag

Agroforestry can be defined as sustainable and multifunctional land-use systems where trees are managed together with agricultural crops or livestock on the same piece of land. In the northern periphery area, agroforestry has a long history with woodland grazing, reindeer husbandry and gathering of different non-wood forest resources as herbs, mushrooms and berries. Traditional agroforestry has gradually disappeared during the 20th century with the intensification of agriculture and forestry. Currently agroforestry systems are gaining new interest, not only from farmers but also from politicians, as this practice can possibly contribute to a more sustainable way of agricultural production. In the northern periphery area, the benefits of agroforestry practices can be manifold not only promoting traditional practices, but also novel systems with the use of new technology. In addition, agroforestry has environmental benefits as a method for conservation and enhancement of biodiversity, improved nutrient cycling, and water quality. Soil humus layer will also increase with several agroforestry systems leading to carbon sequestration. Here we present an overview of agroforestry practices in the Nordic countries and the use of non-wood forest resources with the emphasis on wild berries.

Til dokument

Sammendrag

Sorption could be a way to concentrate nutrients in diluted waste streams to bring more nutrients back to agriculture. However, the sorbed nutrients must be plant available. The aim of this work was to investigate how plant available nitrogen (N) added sorbed to zeolite and is compared to conventionally added N. First, 15N labelled ammonium was sorbed to a sorbent, zeolite, in an aqueous solution. Then, the fertilizer effect was compared to the ammonium fertilizer and added the conventional way, with and without zeolite. A pot experiment with two soil types (chernozem and sandy soil) and wheat as test crop was used. Results indicated that the fertilizer effect of sorbed ammonium in the first growth cycle is about 50% of ammonium added conventionally. The sorbent itself had a positive effect in sandy soil, but not in chernozem. N uptake without added N was higher in chernozem than in sandy soil and more N from fertilizer was left in the soil after the experiment in the chernozem than in the sandy soil. In conclusion, ammonium added sorbed is plant available to some extent, but less so than conventionally added ammonium.

Til dokument

Sammendrag

Bipolar surface EMG (sEMG) signals of the trapezius muscles bilaterally were recorded continuously with a frequency of 800 Hz during full-shift field-work by a four-channel portable data logger. After recordings of 60 forest machine operators in Finland, Norway and Sweden, we discovered erroneous data. In short of any available procedure to handle these data, a method was developed to automatically discard erroneous data in the raw data reading files (Discarding Erroneous EPOchs (DESEPO) method. The DESEPO method automatically identifies, discards and adjusts the use of signal disturbances in order to achieve the best possible data use. An epoch is a 0.1 s period of raw sEMG signals and makes the basis for the RMS calculations. If erroneous signals constitute more than 30% of the epoch signals, this classifies for discharge of the present epoch. Non-valid epochs have been discarded, as well as all the subsequent epochs. The valid data for further analyses using the automatic detection resulted in an increase of acceptable data from an average of 2.15–6.5 h per day. The combination of long-term full-shift recordings and automatic data reduction procedures made it possible to use large amount of data otherwise discarded for further analyses.