Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Forfattere
Lise GrøvaSammendrag
Det er ikke registrert sammendrag
Forfattere
Lise GrøvaSammendrag
Det er ikke registrert sammendrag
Sammendrag
Increasing planting densities and nitrogen (N) application rates are two practices commonly used in high-yield maize (Zea mays L.) production systems to increase crop yield, but have resulted in lower N use efficiency, increased lodging, and negative environmental problems. Crop sensing-based precision N management (PNM) strategies have been developed to optimize maize yield, N use efficiency, and reduce environmental footprints, however, PNM strategies to balance grain yield and lodging risks are still very limited. The objectives of this study were to: (1) propose a N nutrition index (NNI)-based algorithm for in-season estimation of maize N demand; and (2) develop a sensor-based PNM strategy to balance grain yield and lodging risk for maize. Field experiments were conducted in Northeast China from 2017 to 2019, using a split-plot design with three planting densities (5.5, 7.0 and 8.5 plants m−2) as main plots and six N rates (0–300 kg ha−1) as subplots. Based on previous studies, a leaf fluorescence sensor Dualex 4 good for estimating plant N concentration and a canopy reflectance sensor Crop Circle ACS 430 good for estimating plant aboveground biomass were used to estimate maize NNI and predict lodging risk. Total N rates to achieve low lodging risk were determined based on wind velocity causing maize stalk lodging and historical actual natural wind speed, as well as the response of a lodging risk indicator (stem failure moment, Bs) to N supply. In-season side-dress N rates were determined based on theoretical amount of preplant N fertilizer estimated using NNI and a target total N rate. The final recommended sidedress N rates were adjusted based on the sensor-predicted lodging risk. The results indicated that NNI could be used for estimating the theoretical amount of preplant N fertilizer required to reach the current N status. It’s feasible to estimate maize side-dress N demand based on the difference of a target total N rate (to achieve an optimal grain yield or low lodging risk) and the current theoretical N supply. Total N rate to ensure low lodging risk was suggested to be adopted under low and medium planting densities. Medium planting density of 70,000 plants ha−1 matched with the corresponding optimal N rate would be recommended for the study area to balance economic return and lodging risk. In general, high planting density is not recommended because it has high lodging risk. More studies are needed to further improve the developed crop sensing-based PNM strategy with more site-years of data and multi-source data fusion using machine learning models for practical on-farm applications.
Forfattere
Even Unsgård Erling Meisingset Inger Maren Rivrud Gunn Randi Fossland Pål Thorvaldsen Vebjørn Veiberg Atle MysterudSammendrag
In Europe, over a third of the agricultural area is grass meadows used for livestock grazing and fodder production. Grass meadows provide a food source for wild ungulates causing human-wildlife conflicts due to forage removal. Few experimental studies have quantified biomass loss with enough replicates to determine how surrounding environments influences level of biomass removal. Using an exclosure experiment on 57 grassland meadows over five years at the northwest coast of Norway covering 10 650 km2, we quantified biomass removal by red deer (Cervus elaphus L.) and how environmental factors impacted biomass loss (Study 1). Furthermore, we examined development of biomass loss and crude protein concentration in five fields throughout the growing season (Study 2). The average predicted biomass loss to red deer grazing was 16% for the first harvest, and 7.3% for the second harvest (Study 1). Biomass loss increased with red deer density from 0% at the lowest density (0.6 red deer harvested/km2) to 31% at the highest density (4 red deer harvested/km2). Biomass loss increased from 12% to 32.8% as terrain ruggedness index (TRI) rose from 2.1 to 7.1. Absolute biomass loss increased towards time of grass harvest (Study 2). Crude protein concentration was higher in unfenced plots during the period before first harvest, but not between first and second harvest (Study 2). The quantification of biomass removal at a large spatial scale over several years in this study provides a better understanding of factors causing variation in losses.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Habtamu AlemSammendrag
Det er ikke registrert sammendrag
Forfattere
Jian LiuSammendrag
Det er ikke registrert sammendrag
Sammendrag
Forest age structure is one of the most important ecological indicators of forest sustainability in terms of biodiversity, forest history, harvesting potentials, carbon storage, and recreational values. The available information on the forest age is most often stand age from forest management plans or national forest inventories. Depending on the definition, stand age is often not a good indicator for the biological age of the dominant trees in a stand. Here, we used 6,998 increment cores from dominant Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) sampled on National Forest Inventory (NFI) plots throughout Norway to gain a better understanding of the age structure of Norway spruce and Scots pine stands in Norway, and on the relationship between the recorded stand age and the biological age of dominant trees on the NFI plots. In forest with stand ages indicating that the stand was established after the abandonment of selective harvesting in favor of even-aged management dominated by clear-cutting methods (ca.1940 C.E.), we found no systematic difference between the biological age of the sampled trees and the stand age assessed by the NFI. In older stands, there was a large difference between the stand age and the age of the overstory trees with the sampled age trees occasionally being hundreds of years older than the stand age. Our study also reveals that the area of forest with old Norway spruce and Scots pine trees ≥ 160 years old is considerably higher than the corresponding area estimate based on information derived from the stand age only. These results are important as the stand age is often used to characterize status with respect to forest naturalness, biodiversity, guide protection efforts, and describe the appropriate and allowed management activities.
Forfattere
Sidhi Soman Agnethe Christiansen Roman Florinski Girija Bharat Eirik Hovland Steindal Luca Nizzetto Paromita ChakrabortySammendrag
Currently used pesticides (CUPs) were introduced to have lower persistence and bioaccumulation, and lesser bioavailability towards non-target species. Nevertheless, CUPs still represent a concern for both human health and the environment. India is an important agricultural country experiencing a conversion from the use of obsolete organochlorine pesticides to a newer generation of phytosanitary products. As for other developing countries, very little is known about the transfer of CUPs to the human diet in India, where systematic monitoring is not in place. In this study, we analyzed ninety four CUPs and detected thirty CUPs in several food products belonging to five types: cereals and pulses, vegetables, fruits, animal-based foods, and water. Samples were taken from markets in Delhi (aggregating food produced all over India) and in the periurban area of Dehradun (northern India) (representing food produced locally and through more traditional practices). Overall, chlorpyrifos and chlorpropham were the most detected CUPs with a detection frequency of 33% and 25%, respectively. Except for vegetables and fruits, the levels of CUPs in all other food types were significantly higher in samples from Delhi (p < 0.05). Exposure dosage of CUPs through different food matrices was calculated, and chlorpropham detected in potatoes had the maximum exposure dosage to humans (2.46 × 10−6 mg/kg/day). Risk analysis based on the hazard quotient technique indicated that chlorpyrifos in rice (2.76 × 10−2) can be a concern.
Forfattere
Lu FengSammendrag
Det er ikke registrert sammendrag