Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

Til dokument

Sammendrag

Mixtures and pure stands of perennial ryegrass, tall fescue, white clover and red clover were grown in a three-cut and a five-cut system in southern Norway, at a low fertilization rate (100 kg N ha−1 year−1). The nutritional quality (annual weighted averages) of the dried forage from the two-first harvesting years was analysed. There was no significant effect of species diversity on crude protein (CP) concentration. In the three-cut system, we found a significant species diversity effect leading to 10% higher concentrations of acid detergent fibre (ADF), 20–22% lower concentrations of water-soluble carbohydrate (WSC) and 4% lower net energy for lactation (NEL) concentrations in mixtures compared with pure stands (averaged across the two-first years). In the five-cut system, similar effects were seen in the first year only. This diversity effect was associated with a reduction in WSC and NEL concentrations and an increase in ADF, NDF and CP concentrations in the grass species, and not in red clover, when grown in mixtures. This is thought to be a combined result of better N availability and more shading in the mixtures. Species diversity reduced the intra-annual variability in nutritional quality in both cutting systems.