Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Recurrent climate-driven disturbances impact on the health of European forests that reacted with increased tree dieback and mortality over the course of the last four decades. There is therefore large interest in predicting and understanding the fate and survival of forests under climate change. Forest conditions are monitored within the pan-European ICP Forests programme (UN-ECE International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) since the 1980s, with tree crown defoliation being the most widely used parameter. Defoliation is not a cause-specific indicator of tree health and vitality, and there is a need to connect defoliation levels with the physiological functioning of trees. The physiological responses connected to tree crown defoliation are species-specific and concern, among others, water relations, photosynthesis and carbon metabolism, growth, and mineral nutrients of leaves. The indicators to measure physiological variables in forest monitoring programs must be easy to apply in the field with current state-of-the-art technologies, be replicable, inexpensive, time efficient and regulated by ad hoc protocols. The ultimate purpose is to provide data to feed process-based models to predict mortality and threats in forests due to climate change. This study reviews the problems and perspectives connected to the realization of a systematic assessment of physiological variables and proposes a set of indicators suitable for future application in forest monitoring programs.

Til dokument

Sammendrag

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.

Til dokument

Sammendrag

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.