Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

Norway is the largest sheep meat producer among Nordic countries with more than 1.3 million lambs and sheep slaughtered in 2017. The sheep industry is limited by the need for in-house feeding during the winter months. In summer, Norwegian sheep are mainly kept on rangeland pastures, with sufficient feed for almost double the current sheep population. Lambs are slaughtered over a three- to four-month period from September to December with a peak in September–October, providing a surplus of lamb, much of which is subsequently frozen, followed by eight months during which fresh produce is in limited supply. Norwegian consumers eat an average of 5.4 kg of sheep meat per person per year, much of which is purchased as a frozen product. The Muslim (4.2% of the population) preference for year-round halal meat, with an increased demand on the eve of the Muslim meat festival (Eid al-Adha), has the potential to boost demand, particularly in Oslo. This paper provides an overview of the Norwegian sheep farming system, the current market value chains, and the potential to meet the demand for halal meat in Norway (specifically during the Muslim meat festival—Eid al-Adha) to the advantage of both consumers and sheep farmers.

Til dokument

Sammendrag

Advances in techniques for automated classification of point cloud data introduce great opportunities for many new and existing applications. However, with a limited number of labelled points, automated classification by a machine learning model is prone to overfitting and poor generalization. The present paper addresses this problem by inducing controlled noise (on a trained model) generated by invoking conditional random field similarity penalties using nearby features. The method is called Atrous XCRF and works by forcing a trained model to respect the similarity penalties provided by unlabeled data. In a benchmark study carried out using the ISPRS 3D labeling dataset, our technique achieves 85.0% in term of overall accuracy, and 71.1% in term of F1 score. The result is on par with the current best model for the benchmark dataset and has the highest value in term of F1 score. Additionally, transfer learning using the Bergen 2018 dataset, without model retraining, was also performed. Even though our proposal provides a consistent 3% improvement in term of accuracy, more work still needs to be done to alleviate the generalization problem on the domain adaptation and the transfer learning field.

Til dokument

Sammendrag

A novel method for age-independent site index estimation is demonstrated using repeated single-tree airborne laser scanning (ALS) data. A spruce-dominated study area of 114 km2 in southern Norway was covered by single-tree ALS twice, i.e. in 2008 and 2014. We identified top height trees wall-to-wall, and for each of them we derived based on the two heights and the 6-year period length. We reconstructed past, annual height growth in a field campaign on 31 sample trees, and this showed good correspondence with ALS based heights. We found a considerable increase in site index, i.e. about 5 m in the H40 system, from the old site index values. This increase corresponded to a productivity increase of 62%. This increase appeared to mainly represent a real temporal trend caused by changing growing conditions. In addition, the increase could partly result from underestimation in old site index values. The method has the advantages of not requiring tree-age data, of representing current growing conditions, and as well that it is a cost-effective method with wall-towall coverage. In slow-growing forests and short time periods, the method is least reliable due to possible systematic differences in canopy penetration between repeated ALS scans.

Sammendrag

På oppdrag fra vannområdet Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA) er den empiriske modellen Agricat 2 brukt til å beregne potensialet for erosjon og fosforavrenning fra jordbruksarealer i 16 tiltaksområder, ved faktisk drift i 2018. Arealfordelingen av faktisk drift (vekst, jordarbeiding og miljøtiltak) i 2018 har framkommet av registerdata fra Landbruksdirektoratet og føringer/informasjon fra Follo Landbrukskontor, og er fordelt på de dyrka arealene etter bestemte rutiner i modellen. Arealfordelingsrutinen i modellen ga følgende utbredelse av kombinasjon vekst/jordarbeiding i vannområdet for 2018: 28 % stubb (jordarbeiding vår eller direktesåing), 20 % gras, 17 % vårkorn med høstpløying, 20 % høstkorn med høstpløying, 13 % høstharving til vår- og høstkorn, og 2 % poteter og grønnsaker. Arealfordelingen varierte mellom tiltaksområder. Eksisterende grasdekte buffersoner og fangdammer inngikk også i beregningene. Jord- og fosfortap i vannområdet PURA i 2018 ble beregnet til henholdsvis 3,8 kilotonn SS og 6,4 tonn TP. Resultatene for 2018 er ikke direkte sammenliknbare med resultatene fra foregående år pga. at ny beregningsmetode med nye erosjonsrisikokart som grunnlag er brukt for 2018. For individuelle tiltaksområder varierte jordtapet fra nær 0 til 2 kilotonn, og fosfortap fra nær 0 til 3 tonn. Forskjeller i drift bidro til å forklare forskjellene mellom tiltaksområder.