Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2009

Sammendrag

The most important and widespread disease on golf courses is Microdochium nivale. It is a psycrotrophic fungal plant pathogen that is the main cause of biotic winter injury in grasses in the temperate and sub-arctic climates, both with and without snow cover. It is an opportunistic pathogen, with the ability to attack plants under a wide range of environmental conditions. A large variation in both host preference and aggressiveness among isolates has been documented. It is speculated that these traits as well as competition between isolates may be dependent on temperature. The fungus is spread by infected seeds and from infected plants or debris. Besides seed transmitted inoculum, it is not clear whether the primary inoculum source is wind dispersed ascospores or soilborne/plant debris borne inoculum. Wind borne ascospores has been claimed to be the main inoculum source, but perithecia are hardly observed on grasses on Norway. The aim of the present project was obtain better understanding of what is the source of primary inoculum for snow mould caused by M. nivale; to understand how inoculum of M. nivale survives from spring to fall, and from year to year, to understand how climatic conditions affects the potential inoculum by monitoring symptoms on plants, occurrence of the fungus and growth characteristics in vitro of strains sampled from snow melt and through summer and autumn. To obtain such knowledge, surveys and sampling on selected golf courses was conducted. Snow mould symptoms and the occurrence of M. nivale in leaves and stems of grasses sampled from golf greens and foregreens was reduced during the growth season. We also found that M. nivale could be isolated from locations without visible symptoms. Despite a lower isolation rate in autumn, M. nivale was again isolated in some of the originally locations, the following spring. The M. nivale isolation rate was similar from sites located on greens compared to foregreens, and from greens located at more sunny sites compared to more shadowy located greens. We conclude that this fungus seem to survive from year to year within the same locations on greens and foregreens.

Sammendrag

Regulation of flowering time in Arabidopsis thaliana is controlled by a network of pathways integrating environmental and internal signals. Two of these pathways, the vernalization and photoperiodic pathways, mediate responses to prolonged cold period and photoperiod, respectively. A number of A. thaliana populations from high-latitude and high-altitude locations in Norway were collected and phenotyped for flowering time in response to 5 photoperiods and 5 vernalization treatments. Vernalization and photoperiodic sensitivity were not correlated with latitude but rather with climatic factors such as winter temperature and precipitation that do not vary with latitude, especially in coastal environments. Coastal populations, both from subarctic and intermediate latitudes, were rather insensitive towards the length of the vernalization treatment but very sensitive towards differences in photoperiods. Stronger photoperiod sensitivity in coastal populations might be a necessary adaptation for sensing the onset of spring in regions with relatively mild and unpredictable winter climates as opposed to continental climates with more stable winters. FLC sequence variation was only partly associated with vernalization response, whereas variation in transcript levels of CRY2, TOC1 and GI was correlated with photoperiodic responses. This suggests that local adaptation of populations may be partly mediated by photoreceptors and circadian clock pathways.

Sammendrag

Abstract Germplasm characterization is an important component contributing to the effective management of plant genetic resources. The goal of this thesis was to study the genetic diversity of two models of vegetatively propagated plant species; roseroot (Rhodiola rosea L.) and sweet potato (Ipomoea batatas (L.) Lam), based on germplasm collections. Roseroot was recently collected from natural habitats and then vegetatively propagated at the germplasm centre while sweet potato already has a long tradition as a vegetatively propagated food species. I. Roseroot (Rhodiola rosea) Roseroot, R. rosea, also commonly known as golden root or arctic root, is a perennial herbaceous plant of the Crassulaceae family. R. rosea has its origin from the cold, humid regions of the northern hemisphere and grows mostly in the mountains near the snow border. R. rosea is widely distributed in Norway. As part of an effort to identify commercially valuable genotypes characterization of a germplasm collection from Norway was initiated. Amplified Fragment Length Polymorphism (AFLP) analysis was used to estimate genetic diversity within the Norwegian R. rosea germplasm collection. AFLP analysis of 97 R. rosea clones using five primer combinations gave a total of 109 polymorphic bands. A large molecular marker variation was found among roseroot clones in Norway with an average percentage of polymorphic bands (PPB) of 82.3%. Analysis of molecular variance (AMOVA) revealed a significantly greater variation within regions (92.03%) than among regions (7.97%) demonstrating that there was no close genetic similarity among clones originating from the same county. A low level of genetic differentiation (FST = 0.043) was observed, indicating a high level of gene flow, which had a strong influence on the genetic structure in Norway. Our results indicate high gene flow among R. rosea clones that might be a result of seed dispersal rather than cross-pollination. Ninety five clones of the Norwegian roseroot germplasm collection were analysed and quantified for their content of the bioactive compounds rosavin, salidroside, rosin, cinnamyl alcohol and tyrosol using High Performance Liquid Chromatography (HPLC) analysis. All bioactive compounds were detected in all clones but in highly variable quantities. The frequency distribution of the chemical content of each clone was not correlated with geographic region of origin or gender of the plant. Significant correlations between the content of these bioactive compounds were observed within individual roseroot clones. Low and nonsignificant correlations were found between AFLP markers used to study genetic diversity of the roseroot clones and their content of chemical compounds. The maximum content of rosavin, rosin and salidroside observed were substantially higher than previously reported for roseroot plants, and the roseroot clones characterized in this study might therefore be of high pharmacological value. The large quantitative and qualitative variation of the chemical compounds observed in this study and the large genetic diversity observed in this germplasm constitute a firm basis for improving traits such as chemical composition in a breeding program for roseroot. This is the first report that combines the analysis of genetic diversity with information of the chemical composition of roseroot. Further studies of the roseroot populations from Norway as well as from other countries should be performed throughout the following years to identify clones with optimal chemical compositions and to maintain high genetic diversity of this species. II. Sweet potato (Ipomoea batatas (L.) Lam) Sweet potato has its origin in South America and is the 7th most important crop in the world. A Tanzanian sweet potato germplasm collection was characterized using molecular markers and morphological traits. The AFLP method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection ..

Til dokument

Sammendrag

In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose...