Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

After fungal decay experiments chemical characterisation of the wood is often a routine and several methodological approaches are available. In this study, we tested if simultaneous thermal analysis (STA) is a valid alternative to traditional wet chemical methods since STA allows significantly smaller sample size and faster analysis. Three model fungi including the brown rot fungi Rhodonia placenta and Gloeophyllum trabeum and the white rot fungus Trametes versicolor were employed in the study using Norway spruce as substrate. The experiment was harvested after 10, 20 and 52 weeks. At each harvest interval, aliquots of the material were characterized by STA and wet chemical methods. The results validated that STA can be effectively used to estimate cell wall composition of brown rot depolymerised wood. However, STA slightly overestimated cellulose at brown rot decay above 50%. The method was not verified for simultaneous white rot because STA only estimated hemicellulose correctly compared to the wet chemical method. Hence, STA is considered suitable for brown rot fungi below 50% mass loss but not for simultaneous white rot because STA did not estimate cellulose and lignin correctly.

Sammendrag

Key message We studied size distributions of decay-affected Norway spruce trees using cut-to-length harvester data. The harvester data comprised tree-level decay and decay severity recordings from 101 final felling stands, which enabled to analyze relationships between size distributions of all and decay-affected trees. Distribution matching technique was used to transfer the size distribution of all trees into the diameter at breast height (DBH) distribution of decay-affected trees. Context Stem decay of Norway spruce (Picea abies [L.] Karst.) results in large economic losses in timber production in the northern hemisphere. Forest management planning typically requires information on tree size distributions. However, size distributions of decay-affected trees generally remain unknown impeding decision-making in forest management planning. Aims Our aim was to analyze and model relationships between size distributions of all and decay-affected Norway spruce trees at the level of forest stands. Methods Cut-to-length harvester data of 93,456 trees were collected from 101 final felling stands in Norway. For each Norway spruce tree (94% of trees), the presence and severity of stem decay (incipient and advanced) were recorded. The stand-level size distributions (diameter at breast height, DBH; height, H) of all and decay-affected trees were described using the Weibull distribution. We proposed distribution matching (DM) models that transform either the DBH or H distribution of all trees into DBH distributions of decay-affected trees. We compared the predictive performance of DMs with a null-model that refers to a global Weibull distribution estimated based on DBHs of all harvested decay-affected trees. Results The harvester data showed that an average-sized decay-affected tree is larger and taller compared with an average-sized tree in a forest stand, while trees with advanced decay were generally shorter and thinner compared with trees having incipient decay. DBH distributions of decay-affected trees can be matched with smaller error index (EI) values using DBH (EI = 0.14) than H distributions (EI = 0.31). DM clearly outperformed the null model that resulted in an EI of 0.32. Conclusions The harvester data analysis showed a relationship between size distributions of all and decay-affected trees that can be explained by the spread biology of decay fungi and modeled using the DM technique. Keywords Root and butt rot, Heterobasidion spp., Armillaria spp., Cut-to-length harvester, Forest management and planning

Sammendrag

In the Nordic countries, ice encasement of golf greens and agricultural grass fields under sunlight heat often leads to grass death due to oxygen depletion and accumulation of carbon dioxide and metabolites from anaerobic respiration under the ice layer. The phenomenon is termed ‘isbrann’ in Norwegian and it is a severe type of winter damage that may also affect germination and growth after reseeding. We have employed soil water metabolome analyses to differentiate and identify small, water-soluble metabolites produced in ice-encased grass for a better understanding of how ice and anoxic soils might affect grass plants.