Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2015

Sammendrag

Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Østfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.

Til dokument

Sammendrag

BACKGROUND Plants grown at different latitudes experience differences in light spectral composition. Broccoli (Brassica oleracea L. var italica) plants were grown in climate-controlled chambers under supplemental wavelengths (red, far-red, red + far-red or blue) from light-emitting diodes (LEDs). The light treatments were combined with two cold climate temperatures (12 and 15 °C) during broccoli head formation to investigate the effects on morphology and content of health- and sensory-related compounds: glucosinolates, flavonols, ascorbic acid and soluble sugars. RESULTS Supplemental far-red and red + far-red light led to elongated plants and the lowest total glucosinolate content in broccoli florets. The content of quercetin was highest with supplemental red light. Vitamin C was not significantly affected by the light treatments, but 12 °C gave a higher content than 15 °C. CONCLUSION The effects of supplemental red and far-red light suggest an involvement of phytochromes in the regulation of glucosinolates and flavonols. A shift in red:far-red ratio could cause changes in their content besides altering the morphology. The sugar and vitamin C content appears to be unaffected by these light conditions. Supplemental blue light had little effect on plant morphology and content of the health- and sensory related compounds.