Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Conservation of species associated with semi-natural grasslands, a threatened habitat, is dependent on their ability to disperse between the few and fragmented patches remaining in the landscape. To maintain metapopulations dynamics and reduce the risk of regional extinction, it is essential to know whether other, more widespread, habitats can act as alternative habitat for the biodiversity associated with threatened habitats. Here, we study how four widespread habitat types in boreal landscapes—forest, permanent grassland, abandoned grassland and road verge—can contribute to the conservation of plant species found in semi-natural grasslands which is a species-rich ecosystem important for plant and pollinator diversity that has experienced extensive reduction, fragmentation and isolation. We compare richness of all vascular plants, insect-pollinated plants and semi-natural grassland specialists among habitat types in two regions is Norway where semi-natural grasslands are few and fragmented. Based on overlap in community composition and local species richness, road verges were the most promising alternative habitat for both insect-pollinated plants and semi-natural grasslands specialists. Several habitat specialist species were, however, only found in semi-natural grasslands and, for these species, no other habitat can be considered suitable as alternative habitat. Our results highlight that a holistic management perspective is needed to maintain biodiversity associated with semi-natural grasslands. Thus, both the protection of remaining patches of the primary, threatened habitats as well as management of widespread, alternative habitats in the landscape should be prioritized.

Til dokument

Sammendrag

Tomato greenhouses at high latitudes (≥58°North) require supplemental light to enable high yields and year-round production. Supplemental light systems can differ in lamp type, high-pressure sodium (HPS) or light emitting diode (LED), and also vary in lamp capacity. Based on a combined greenhouse climate, tomato yield, and greenhouse economics model, a methodology was developed, for determining the optimal supplemental light system, dependent on local climate and economic conditions. Two optimisation objectives were considered separately, maximal energy use efficiency (EUE) and maximal net financial result (NFR). The developed methodology was applied to four different greenhouse locations in Norway. At each location, both optimisation objectives were reached with LEDs. The optimal lamp capacities range from 256 to 341 μmol m−2 s−1 (maximal EUE) and 302–323 μmol m−2 s−1 (maximal NFR). The economically optimal lamp capacity is little sensitive to climate conditions. At the lamp type respective NFR maxima, LEDs resulted, on average, in 10% higher tomato yield, 102.2 NOK m−2 year−1 higher NFR, and 35% higher EUE. Consequently, switching from HPS lamps to LEDs enables increasing productivity, energy efficiency and profitability of greenhouse tomato production. Furthermore, the difference between EUE and NFR optima was, on average, 24% lower in terms of EUE and 56% lower in terms of NFR, when using LEDs instead of HPS lamps. On farm-scale, the proposed methodology can be used as decision-support-tool for selecting an efficient and profitable supplemental light system for greenhouse tomato production, dependent on local climate and economic conditions.

Sammendrag

Environmental conditions during plant raising determine the yield potential of everbearing strawberries. We studied the effect of three rooting dates in the cultivars ‘Favori’ and ‘Murano’ in a greenhouse with 18 ℃ and 20-h long day and under outdoor conditions in Norway. The highest yield of 1.350 g/plant was obtained in ‘Favori’ plants rooted on 1 August and raised outdoors, being at level with ‘Favori’ plants produced in The Netherlands. High yields were mainly related to fruit size and less to fruit number, and determined by a complex three-factor interaction of rooting date, raising environment, and cultivar. The seasonal pattern of fruit flushes and off periods varied significantly between cultivars and treatments. The large first flush of high yielding ‘Favori’ plants was associated with a long off period, while the small first flush in ‘Murano’ resulted in a more even crop distribution. Earliness of ripening and berry harvest was superior in ‘Favori’, which had a larger share of its crop during the first half-season. We conclude that it is possible by choosing the right rooting date and raising environment to produce plants with the same high quality and yield potential under the cool Nordic conditions as those currently produced in Central Europe.

Sammendrag

Artene vi sår i enga har forskjellige egenskaper og de kan ha forskjellig avlingsnivå. Er det lurt å satse på noen få eller bør vi blande flere arter? Reinbestand er uvanlig i nord; de fleste sår en blanding av minst to arter. Flere studier viser at blanding av flere arter i enga kan gi mange fordeler som høyere avling over tid, mindre ugras, bedre robusthet og redusert behov for både gjødsel og sprøytemidler. Frøfirmaene tilbyr også nå mange engfrøblandinger med flere arter.