Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Agricultural sustainability is threatened by both water deficit and water excess, especially at the presence of extreme meteorological events resulting from climate change. However, there has been lack of demonstrations on management options with long-term values for agricultural adaptation to runoff. Using 20 years of monitoring data (1993–2012) for two experimental fields in the Canadian Prairies as a case study, we quantified the effects of rainfall characteristics, crop type and biomass, and tillage on growing-season runoff generation using regression analyses and thereafter scenario comparisons. With growing-season gross rainfall ranging between 183 and 456 mm, runoff responses varied between 0 and 59 mm. Over the 20-year study period, 70%–74 % of the growing season runoff was generated by rainfall events >100 mm. Compared to high-intensity tillage, long-term conservation tillage reduced both overall runoff and runoff in large events likely by improving water infiltration. Under both tillage methods, growing-season runoff significantly increased with increasing rainfall but decreased with increasing biomass (R2 range: 0.40–0.58; p range: 0.0007–0.02). At the event level, the rainfall-runoff relationship followed a piecewise regression model (Cd ¼ 0.82; p

Til dokument

Sammendrag

Who interacts with whom is a key question in community and network ecology. The concept that these interactions may be driven by a match between the traits of consumer and resource species is known as trait-matching. If trait-matching would allow for general predictions of interaction structure based on sufficiently few and easily-measurable traits, then this approach could replace the laborious description of each individual pairwise interaction. To resolve imprints of trait-matching in a species-rich tri-trophic Salix–galler–parasitoid network, and to identify the most relevant traits, we applied five different methods, each approaching the same phenomenon from a different perspective. As traits, we used, body sizes, gall type (position on plant, structure of gall) and phenology, among others, as well as phylogenetic proxies. When jointly applied, the methods demonstrate distinctly different imprints of traits within the two bipartite network elements (Salix–galler versus galler–parasitoid interactions). Of the galler–parasitoid sub-network's interactions, approximately half were explainable by the species traits used; of the Salix–galler sub-network's interactions, traits explained at most two-fifths. Gall type appeared to be the most important structuring trait in both networks. Phylogeny explained as much, or more than did our tested traits, suggesting that traits may be conserved and phylogeny therefore an effective proxy. Overall, the more specialized structure of the Salix–galler network versus the more nested structure of the galler–parasitoid network meant that different methods were more effective at capturing interactions and interaction structure in the different sub-networks. Thus, our analysis reveals how structuring impacts may vary even between levels within the same multitrophic network, and calls for comparative analyses of trait matching across a wide set of systems and methods.

Til dokument

Sammendrag

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.

Til dokument

Sammendrag

Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.