Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

The maximum size-density relationship describes site carrying capacity, i.e., the maximum number of trees of a given size that can be stocked per unit area (self-thinning line). We analysed whether the self-thinning lines of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) have remained unchanged over time in South Germany, Norway and Finland, i.e., over a wide climatic gradient from Central Europe up to the Arctic circle. The analyses are based on long-term growth and yield experiments measured on individual tree basis over several decades, the oldest experiments established during the early 20th century. The stochastic frontier analysis was used to analyse changes in the species-specific self-thinning lines. The results show that the self-thinning lines have shifted upwards over time in all the regions. Thus, currently stands sustain higher stand densities than in the past. The increase of the maximum density for a given average stem size was more pronounced for pine than for spruce, but similar in all studied geographical regions. In addition, increasing site index was associated with increasing site carrying capacity for spruce and pine in all regions. The results imply that environmental changes have altered site properties in similar fashion across the whole study region. In practical forestry, increased site carrying capacity will reduce mortality and loss of growing stock.

Til dokument

Sammendrag

Management of Earth’s surface albedo is increasingly viewed as an important climate change mitigation strategy both on (Seneviratne et al., 2018) and off (Field et al., 2018; Kravitz et al., 2018) the land. Assessing the impact of a surface albedo change involves employing a measure like radiative forcing (RF) which can be challenging to digest for decision-makers who deal in the currency of CO2- equivalent emissions. As a result, many researchers express albedo change (1α) RFs in terms of their CO2-equivalent effects, despite the lack of a standard method for doing so, such as there is for emissions of well-mixed greenhouse gases (WMGHGs; e.g., IPCC AR5, Myhre et al., 2013). A major challenge for converting 1α RFs into their CO2-equivalent effects in a manner consistent with current IPCC emission metric approaches stems from the lack of a universal time dependency following the perturbation (perturbation “lifetime”). Here, we review existing methodologies based on the RF concept with the goal of highlighting the context(s) in which the resulting CO2-equivalent metrics may or may not have merit. To our knowledge this is the first review dedicated entirely to the topic since the first CO2-eq. metric for 1α surfaced 20 years ago. We find that, although there are some methods that sufficiently address the time-dependency issue, none address or sufficiently account for the spatial disparity between the climate response to CO2 emissions and 1α – a major critique of 1α metrics based on the RF concept (Jones et al., 2013). We conclude that considerable research efforts are needed to build consensus surrounding the RF “efficacy” of various surface forcing types associated with 1α (e.g., crop change, forest harvest), and the degree to which these are sensitive to the spatial pattern, extent, and magnitude of the underlying surface forcings.

Til dokument

Sammendrag

The decline of the Arctic cryosphere during recent decades has lowered the region’s surface albedo, reducing its ability to reflect solar radiation back to space. It is not clear what role the Antarctic cryosphere plays in this regard, but new remote-sensing-based techniques and datasets have recently opened the possibility to investigate its role. Here, we leverage these to show that the surface albedo reductions from sustained post-2000 losses in Arctic snow and ice cover equate to increasingly positive snow and ice albedo feedback relative to a 1982–1991 baseline period, with a decadal trend of +0.08 ± 0.04 W m–2 decade–1 between 1992 and 2015. During the same period, the expansion of the Antarctic sea-ice pack generated a negative feedback, with a decadal trend of −0.06 ± 0.02 W m–2 decade–1. However, substantial Antarctic sea-ice losses during 2016–2018 completely reversed the trend, increasing the three-year mean combined Arctic and Antarctic snow and ice albedo feedback to +0.26 ± 0.15 W m–2. This reversal highlights the importance of Antarctic sea-ice loss to the global snow and ice albedo feedback. The 1992–2018 mean feedback is equivalent to approximately 10% of anthropogenic CO2 emissions over the same period; the share may rise markedly should 2016–2018 snow and ice conditions become common, although increasing long-wave emissions will probably mediate the impact on the total radiative-energy budget.