Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

I denne rapporten presenteres framskrivninger for opptak og utslipp fra arealbrukssektoren (eng. Land Use, Land-Use Change and Forestry; LULUCF) frem til 2100. Framskrivninger av opptak og utslipp av CO2 og andre klimagasser fra arealbrukssektoren er utført i tråd med metodikken brukt i klimagassregnskapet for Norge i 2019 (Miljødirektoratet mfl. 2019), og basert på data rapportert for 2010 – 2017 som referanseperiode. Framskrivningen for opptak og utslipp i skog er basert på tilsvarende metodikk som i referansebanen for forvaltede skogarealer (eng. Forest Reference Level, FRL), som publisert i National Forest Accounting Plan (Klima- og miljødepartementet 2019), men basert på nyeste tilgjengelige data og med implementert politikk. Framskrivningene er utført basert på rapporteringen under FNs klimakonvensjon og Kyotoprotokollen, samt EUs LULUCF-forordning.

Til dokument

Sammendrag

The climate is an aggregate of the mean and variability of a range of meteorological variables, notably temperature (T) and precipitation (P). While the impacts of an increase in global mean surface temperature (GMST) are commonly quantified through changes in regional means and extreme value distributions, a concurrent shift in the shapes of the distributions of daily T and P is arguably equally important. Here, we employ a 30‐member ensemble of coupled climate model simulations (CESM1 LENS) to consistently quantify the changes of regionally and seasonally resolved probability density functions of daily T and P as function of GMST. Focusing on aggregate regions covering both populated and rural zones, we identify large regional and seasonal diversity in the probability density functions and quantify where CESM1 projects the most noticeable changes compared to the preindustrial era. As global temperature increases, Europe and the United States are projected to see a rapid reduction in wintertime cold days, and East Asia to experience a strong increase in intense summertime precipitation. Southern Africa may see a shift to a more intrinsically variable climate but with little change in mean properties. The sensitivities of Arctic and African intrinsic variability to GMST are found to be particularly high. Our results highlight the need to further quantify future changes to daily temperature and precipitation distributions as an integral part of preparing for the societal and ecological impacts of climate change and show how large ensemble simulations can be a useful tool for such research.