Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Mountain vegetation is often considered highly sensitive to climate and land-use changes due to steep environmental gradients determining local plant species composition. In this study we present plant species compositional shifts in the Tatra Mts over the past 90 years and discuss the potential drivers of the changes observed. Using historical vegetation studies of the region from 1927, we resurveyed 76 vegetation plots, recording the vascular flora of each plot using the same methodology as in the original survey. We used an indirect method to quantify plant species compositional shifts and to indicate which environmental gradients could be responsible for these shifts: by calculating shifts in estimated species optima as reflected in shifts in the ecological indicator values of co-occurring species. To find shifts in species composition, focusing on each vegetation type separately, we used ordination (DCA). The species optimum changed significantly for at least one of the tested environmental gradients for 26 of the 95 plant species tested; most of these species changed in terms of the moisture indicator value. We found that the strongest shifts in species composition were in mylonite grassland, snowbed and hygrophilous tall herb communities. Changes in precipitation and increase in temperature were found to most likely drive compositional shifts in vegetation resurveyed. It is likely that the combined effect of climate change and cessation of sheep grazing has driven a species composition shift in granite grasslands communities.

Til dokument

Sammendrag

The prevalence of livestock grazing in wildlife area s is increasing. This transformation of ecosys- tems into agroecosystems is concerning because the intr oduction of new species may cause niche displacement of the functionally related native species. We used a la rge-scale fence scheme and f ecal analyses to study the in fl uence of free-ranging livestock on moose diet on thr ee boreal forest ranges. We found low interspeci fi cdiet overlap between moose and livestock (mean Pianka ’ s O across ranges = 0.21, SD = 0.104), and the diet overlap with livestock did not differ between moose in areas with livestock and in adjacent control areas without live- stock. Still, moose sympatric with livestock had less fe cal nitrogen (a proxy for diet quality) than moose in the control areas. Our fi ndings suggest that interspeci fi c interactions other than direct food competition contributed to reduce the moose ’ foraging opportunities, such as altered forag e abundance and composition, or behavioral avoidance of livestock. We caution that displacement in the foodscape (i.e., spati otemporal use of food) can occur through pathways not evident in niche indices based on composition of plant species in the diet.

Til dokument

Sammendrag

The research literature on food selection by large herbivores is extensive. Still, we are generally lacking in our knowledge of the influence of potentially interacting chemical contents of the food. We made a qualitative review of a systematic literature search of studies that empirically link chemical contents of food to the food selection by northern cervids (genera Alces, Capreolus, Cervus, Dama, Odocoileus, Rangifer). We found that although the majority of the 98 relevant studies measuring any given food constituent (energy, protein, fiber, minerals, plant secondary metabolites) provided support for it acting as a driver of food selection (in either a negative or positive way), there was little support for the traditional hypotheses of maximization or limitation of any single constituent. Rather, because of the animals’ need to acquire an appropriate intake of several constituents at the same time, our review highlights how new empirical stud- ies need to focus on several food constituents in synchrony: (1) Study designs should capture sufficient variation in the content of food constituents in order to tease apart their many co-variations; and (2) insights about nutritional drivers may be lost if one uses only composite currencies such as crude energy, crude fiber, ash, or tannins, which may mask contrasting selection patterns of the lumped constituents. Season had an apparent influence on the selection of some food constituents, particularly various fiber frac- tions. In contrast, our review revealed a lack of evidence that cervids more strongly select for protein in summer than they do in winter. Our overall conclusion of the review is that interacting chemical contents of food make the nutritional value of a given food type into a varying entity. To better elucidate this varia- tion, we need new technologies that non-invasively capture nutrient intake of free-ranging animals, across seasons.

Sammendrag

Beitedyr i utmarka og bærekraft. Beitedyr i utmarka: 00:28:40 min ut i sendinga + 01:05:50 – 01:09:40