Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning—a reversal of the greening trend of the region—and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affected ecosystems. In this study, we report eddy covariance fluxes of CO2 from a peatland in northern Norway and show that vegetation CO2 uptake was delayed and reduced in the summer of 2014 following an extreme winter event earlier that year. Strong frost in the absence of a protective snow cover—its combined intensity unprecedented in the local climate record—caused severe dieback of the dwarf shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along ~1000 km of coastal Norway, showing the widespread impact of this event. Our results indicate that gross primary production (GPP) exhibited a delayed response to temperature following snowmelt. From snowmelt up to the peak of summer, this reduced carbon uptake by 14 (0–24) g C m−2 (~12% of GPP in that period)—similar to the effect of interannual variations in summer weather. Concurrently, remotely-sensed NDVI dropped to the lowest level in more than a decade. However, bulk photosynthesis was eventually stimulated by the warm and sunny summer, raising total GPP. Species other than the vulnerable shrubs were probably resilient to the extreme winter event. The warm summer also increased ecosystem respiration, which limited net carbon uptake. This study shows that damage from a single extreme winter event can have an ecosystem-wide impact on CO2 uptake, and highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict trends in vegetation productivity and carbon sequestration in the Arctic and sub-Arctic.

To document

Abstract

The aim of this study was to contribute to the development of pelleted compound recycling fertilizerswith favourable handling and spreading characteristics and balanced nutrient ratios by combiningnitrogen (N)- and phosphorus (P)-rich waste resources (meat bone meal, fish sludge or food waste)with potassium (K)-rich bottom wood ash. Pelleted compound recycling fertilizers with gooddurability and low dusting tendency were produced by roll-pelleting preheated waste resources at asuitable moisture content. However, the nutrient ratios in the final products were insufficientlybalanced, with too low N concentrations relative to P and K to meet crop demands. In a bioassayusing barley ( Hordeum vulgare) and a nutrient-deficient sand/peat mixture, the relative agronomiceffectiveness (RAE) of pelleted compound recycling fertilizers and reference recycling fertilizers was22–42% of that of mineral compound fertilizer. Growth limitation was due to reduced N availability(mineral fertilizer equivalent - MFE = 35–57%) or reduced P availability (MFE = 20–115%), with thegreatest P fertilizer value obtained for digestate based on dairy manure and fish sludge. Availability ofK in bottom wood ash was masked by the experimental soil.

Abstract

Mørdre nedbørfelt er en del av Program for jord- og vannovervåking i landbruket (JOVA) som rapporterer årlig om jordbruksdrift, avrenning og tap av partikler, næringsstoffer og plantevernmidler. I perioden fra 2010 til 2016 ble det observert de høye tap av fosfor i Mørdre-feltet. Denne rapporten presenterer en analyse av en lang tidsserie av observerte data for avrenning, suspendert sediment og fosfor tap som tar sikte på å undersøke årsakene til høye fosfortap samt eventuelt identifisere en permanent endring. Utfordringen er: (1) tidsavhengighet, (2) sammenkobling mellom prosessene i nedbørfelt og (3) nøyaktig informasjon om all aktiviteter i nedbørfeltet. Disse kan ikke identifiseres direkte fra gjeldende datasett. Forfattere identifiserte komplementære målinger og / eller tiltak som tar sikte på å undersøke og forstå vannets veier og transportprosesser for sediment og næringsstoffer i nedbørfeltet, og omfatter undersøkelser koblet til ekstreme hendelser.

To document

Abstract

Large terrestrial carnivores can sometimes display strong family bonds affecting the spatial distribution of related individuals. We studied the spatial genetic relatedness and family structure of female Eurasian lynx, continuously distributed in southern Finland. We hypothesized that closely related females form matrilineal assemblages, clustering together with relatives living in the neighboring areas. We evaluated this hypothesis using tissue samples of 133 legally harvested female lynx (from year 2007 to 2015), genotyped with 23 microsatellite markers, and tested for possible spatial genetic family structure using a combination of Bayesian clustering, spatial autocor ‐ relation, and forensic genetic parentage analysis. The study population had three potential family genetic clusters, with a high degree of admixture and geographic overlap, and showed a weak but significant negative relationship between pairwise genetic and geographic distance. Moreover, parentage analysis indicated that 64% of the females had one or more close relatives (sister, mother, or daughter) within the study population. Individuals identified as close kin consistently assigned to the same putative family genetic cluster. They also were sampled closer geographically than females on average, although variation was large. Our results support the possibility that Eurasian lynx forms matrilineal assemblages, and comparisons with males are now required to further assess this hypothesis.

To document

Abstract

1. Large-scale pattern-oriented approaches are useful to understand the multi-level processes that shape the genetic structure of a population. Matching the scales of patterns and putative processes is both a key to success and a challenge. 2. We have developed a simple statistical approach, based on variogram analysis, that identifies multiple spatial scales where the population pattern, in this case genetic structure, have highest expression (i.e. the spatial scales at which the strength of patterning of isolation-by-distance (IBD) residual variance reached maximum) from empirical data and, thus, at which scales it should be studied relative to the underlying processes. The approach is applicable to any spatially explicit pairwise data, including genetic, morphological or ecological distance or similarity of individuals, populations and ecosystems. To exemplify possible applications of this approach, we analysed microsatellite genotypes of 1,530 brown bears from Sweden and Norway. 3. The variogram approach identified two scales at which population structure was strongest, thus indicating two different scale-dependent processes: home-rangerelated processes at scales <35 km, and subpopulation division at scales >98 km. On the basis of this, we performed a scale-explicit analysis of genetic structure using DResD analysis and compared the results with those obtained by the Bayesian clustering implemented in structure. 4. We found that the genetic cluster identified in central Scandinavia by Structure is caused by IBD, with distinct gene flow barriers to the south and north. We discuss possible applications and research perspectives to further develop the approach.