Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.

Til dokument

Sammendrag

Soft rot Pectobacteriaceae (SRP) are ubiquitous on earth as there are records of findings from all continents where host plants are grown. This chapter describes information on soft rot diseases on these continents. For some countries, detailed information is provided by local experts on the SRP present, their economic damage, and the management strategies applied for their control. The focus of the chapter is mainly on SRP as causative agents of potato blackleg, although in specific cases details are provided on SRP in other host plants. In Europe, the SRP cause important economic losses mainly on potato, with most species described in the literature being found. In Latin America significant losses are also reported due to potato diseases caused by various Dickeya and Pectobacterium species, while in Australia and Oceania, recent outbreaks of D. dianthicola in potato have resulted in high economic losses. In Asia, however, SRP cause economic losses mainly in vegetable crops other than potato, while in North America SRP cause diseases on a wide range of crops (including potato and ornamental plants) in both field and storage. In Africa SRP are only known to occur in 17 of the 54 African countries but where it is known, potato is the most affected crop.

Til dokument

Sammendrag

Arbuscular mycorrhizal fungi (AMF) are important in plant nutrient uptake, but their function is prone to environmental constraints including soil factors that may suppress AMF transfer of phosphorus (P) from the soil to the plant. The objective of this study was to disentangle the biotic and abiotic components of AMF-suppressive soils. Suppression was measured in terms of AMF-mediated plant uptake of 33P mixed into a patch of soil and treatments included soil sterilization, soil mixing, pH manipulation and inoculation with isolated soil fungi. The degree of suppression was compared to volatile organic compound (VOC) production by isolated fungi and to multi-element analysis of soils. For a selected suppressive soil, sterilization and soil mixing experiments confirmed a biotic component of suppression. A Fusarium isolate from that soil suppressed the AMF activity and produced greater amounts than other fungal isolates of the antimicrobial VOC trichodiene (a trichothecene toxin precursor), beta-chamigrene, alpha-cuprenene and p-xylene. These metabolites deserve further attention when unravelling the chemical background behind the suppression of AMF activity by soil microorganisms. For the abiotic component of suppression, soil liming and acidification experiments confirmed that suppression was strongest at low pH. The pH effect might be associated with changed availability of specific suppressive elements. Indeed 33P uptake from the soil patches correlated negatively to Al levels and Al toxicity seems to play a major role in the AMF suppressiveness at pH below 5.0–5.2. However, the documentation of a biotic component of suppression for both low and high pH soils leads to the conclusion that biotic and abiotic components of suppression may act in parallel in some soils. The current insight into the components of soil suppressiveness of the AMF activity aids to develop management practices that allow for optimization of AMF functionality.

Til dokument

Sammendrag

Plant-parasitic nematodes (PPN) cause significant yield reduction in commercial pineapple (Ananas comosus) worldwide. In Kenya, few nematode studies have been conducted, although the main commercial pineapple producer has sole dispensation to use Telone II (1,3-Dichloropropene) indicating the magnitude of the nematode problem. This study was conducted with the aim to investigate the population densities and diversity of nematodes in two commercial plantations with two contrasting management practices. We additionally assessed the influence of crop age and compared this with nearby smallholder pineapple production systems. Soil and root samples were collected from fields of different ages in each commercial plantation and from 29 smallholder fields. A total of 18 genera were associated with pineapple, with a relatively greater diversity found in smallholder than commercial farms. The most prevalent genus was Meloidogyne spp. (M. javanica) followed by Helicotylenchus spp., Tylenchus spp. and Aphelenchoides spp. PPN densities were higher in relatively older fields of 24 and 36 months than from fallow and 3-month-old fields. Regression analysis additionally demonstrated the rise of PPN densities with age of pineapple fields, especially Meloidogyne spp., while free-living nematode densities declined. This study provides an indication of the high level of PPN infection in pineapple in Kenya, which would constitute an important factor contributing to low yields. The study confirms an obvious need for pineapple producers to control PPN to improve crop yields.