Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Most food in developed countries, including organic fruits and vegetables, is sold through supply chains run by large wholesalers and supermarket chains. A certain share is sold through local marketing channels such as speciality stores, food box schemes, farmers' markets, and community-supported agriculture (CSA). This study uses qualitative interviews and a quantitative survey to expose the differences between mainstream and local marketing of organic fruits and vegetables in Norway, why and to what extent farmers selling through these two sales channels are different. We find that the supermarket chains' requirements to provide large quantities of uniform product are burdensome for smaller farmers to match. Farmers supplying the mainstream supermarkets tend to be larger and more rurally located. Farmers selling through local marketing are likely to be smaller, closer to urban areas and more diversified in their production. For local marketing farmers, it is more feasible to produce according to organic principles, using local resources and crop rotation. Survey results also show that local marketing farmers are less motivated to produce fruits and vegetables by income and more motivated to produce organically to achieve better quality and sustainability. At the same time, there are also many similarities between the two groups, and we do not find evidence of a general “conventionalisation” of organic agriculture in Norway.

Til dokument

Sammendrag

The Indo-Gangetic Plain (IGP) is one of the main wheat-production regions in India and the world. With climate change, wheat yields in this region will be affected through changes in temperature and precipitation and decreased water availability for irrigation, raising major concerns for national and international food security. Here we use a regional climate model and a crop model to better understand the direct (via changes in temperature and precipitation) and indirect (via a decrease in irrigation availability) impacts of climate change on wheat yields at four sites spread across different states of the IGP: Punjab, Haryana, Uttar Pradesh and Bihar. The results show an increase in mean temperature and precipitation as well as maximum temperature during the growing season or Rabi season (November–April). The direct impact of climate change, via changes in temperature and precipitation, leads to wheat yield losses between −1% and −8% depending on the site examined. Then, the indirect impact of climate change is examined, considering the impact of climate change on water availability leading to a decrease in irrigation. In this case, the yield losses become significant and much higher, reaching −4% to −36% depending on the site examined and the irrigation regime chosen (6, 5, 3 or 1 irrigations). This work shows that the indirect impacts of climate change may be more detrimental than the direct climatic effects for the future wheat yields in the IGP. It also emphasizes the complexity of climatic risk and the necessity of integrating indirect impacts of climate change to fully assess how it affects agriculture and choose the adequate adaptation response.

Til dokument

Sammendrag

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.