Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Dairy farming yields milk and meat; however, production is linked with an environmental burden (Wattiaux et al., 2019). In our study N-intensity, GHG emission and land use occupation at 200 dairy farms from central Norway was calculated from cradle to farm gate. Nitrogen intensity was calculated as sum of N from purchased inputs, biological N-fixation, atmospheric N-deposition, N-surplus from off-farm production of ingredients for concentrates and roughage and of bought animals divided by N in delivered milk and meat (Koesling et al., 2017). The organic farms (n=15) had a lower N-intensity than conventional managed farms (n=185) (5.0 vs 6.9 kg N/kg N). Mainly explained by lower use of imported N in the organic farm group. The organic managed farms, however, had a higher land use occupation than conventional farms (3.6 vs 2.9 m2 per 2.78 MJ edible energy in milk or meat delivered (2.78 MJMM)). The GHG emissions per 2.78 MJ edible energy in milk or meat was on average 1.4 kg CO2/2.78 MJMM edible energy for all farms (n=200). The GHG emission was correlated with N-intensity (r2=0.85), which indicate that reduced N-intensity is associated with lower GHG emissions per product unit. Our results support that improved utilization of local resources, e.g. manure, legumes in grass- based forage are likely to reduce N-intensity at both organic and conventional managed farms. Reduced N-intensity will likely lessen GHG emissions. The reduced N-intensity and GHG emission came at an expense of increased land use occupation per produced product. References Koesling, M., Hansen, S., Bleken, M.A., 2017. Variations in nitrogen utilisation on conventional and organic dairy farms in Norway. Agric Syst. 157, 11–21. https://doi.org/10.1016/j.agsy.2017.06.001. Wattiaux, M.A., Uddin, M.E., Letelier, P., Jackson, R.D., Larson, R.A., 2019. INVITED REVIEW: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. AAS. 35 (2), 238-254. https://doi.org/10.15232/aas.2018-01803.

Til dokument

Sammendrag

Ensiling of whole-crop biomass of barley before full maturity is common practice in regions with a short growing season. The developmental stage of barley at harvest can have a large impact on yield and nutritive composition. The relationships between crop growth, environmental conditions and crop management can be described in process-based simulation models. Some models, including the Basic Grassland (BASGRA) model, have been developed to simulate the yield and nutritive value of forage grasses, and usually evaluated against metrics of relevance for whole-crop silage. The objectives of this study were to: i) modify the BASGRA model to simulate whole-crop spring barley; ii) evaluate the performance of this model against empirical data on dry matter (DM) yield and nutritive value attributes from field experiments, divided into geographical regions; and iii) evaluate DM yield, nutritive value and cutting date under current and future climate conditions for three locations in Sweden and four cutting regimes. Main model modifications included addition of a spike pool, equations for carbon (C) and nitrogen (N) allocation to the spike pool and equations for C and N translocation from vegetative plant parts to spikes. Model calibration and validation against field trial data from Sweden, including samples harvested from late anthesis stage to hard dough stage that were either pooled or divided into regions, showed better prediction accuracy, evaluated as normalised root mean squared error (RMSE), of neutral detergent fibre (NDF) (7.58–18.4%) than of DM yield (16.8–27.8%), crude protein (15.5–23.2%) or digestible organic matter in the DM (DOMD) (12.0–22.2%). Model prediction using weather data representing 1990–2020 and 2021–2040 climate conditions for three locations in Sweden (Skara, Umeå, Uppsala) showed lower DM yield, earlier harvest and slightly higher NDF concentration on average (across locations and developmental stage at cutting) when using near-future climate data rather than historical data. The model can be used to evaluate whole-crop barley performance under production conditions in Sweden or in other countries with similar climate, soils and crop management regimes.

Til dokument

Sammendrag

Winter storage of seedlings in freezers reduces the amount of heat sum available for growth in the following growing season compared to seedlings stored outdoors. To test the effects of a reduced growing period on the autumn frost hardiness of the six species most used in Icelandic afforestation, seedlings were stored outdoors or in a freezer during winter. In spring, the seedlings were planted on 24 May, 7 June, 21 June, and 5 July, and the frost hardiness of all treatments was tested on 12 and 26 September. In general, the probability of freezing damage increased with a later planting date, with outdoor-stored seedlings having the lowest probability of damage. The timing of frost events was of great importance; the later the freezing date, the less damage was observed. Growth cessation occurred at different times for each species, and they responded differently to the reduced heat sum. Lodgepole pine and birch accumulated the most frost hardiness in September. Sitka spruce had less autumn frost hardiness than Lutz spruce. Hybrid larch accumulated less frost hardiness than Russian larch and was most sensitive to the reduced heat sum. The results can be used to determine which species should be prioritised in frozen storage with regard to Iceland‘s short growing season.

Til dokument

Sammendrag

Bilberry (Vaccinium myrtillus L.) is a wild berry species that is prevalent in northern Europe. It is renowned and well-documented for its nutritional and bioactive properties, especially due to its anthocyanin content. However, an overview of biological systems governing changes in other crucial quality traits, such as size, firmness, and flavours, has received less attention. In the present study, we investigated detailed metabolomic and proteomic profiles at four different ripening stages of bilberry to provide a comprehensive understanding of overall quality during fruit ripening. By integrating omics datasets, we revealed a novel global regulatory network of plant hormones and physiological processes occurring during bilberry ripening. Key physiological processes, such as energy and primary metabolism, strongly correlate with elevated levels of gibberellic acids, jasmonic acid, and salicylic acid in unripe fruits. In contrast, as the fruit ripened, processes including flavour formation, cell wall modification, seed storage, and secondary metabolism became more prominent, and these were associated with increased abscisic acid levels. An indication of the increase in ethylene biosynthesis was detected during bilberry development, raising questions about the classification of non-climacteric and climacteric fruits. Our findings extend the current knowledge on the physiological and biochemical processes occurring during fruit ripening, which can serve as a baseline for studies on both wild and commercially grown berry species. Furthermore, our data may facilitate the optimization of storage conditions and breeding programs, as well as the future exploration of beneficial compounds in berries for new applications in food, cosmetics, and medicines.

Til datasett

Sammendrag

Climate change, landscape homogenization and the decline of beneficial insects threaten pollination services to wild plants and crops. Understanding how pollination potential (i.e. the capacity of ecosystems to support pollination of plants) is affected by climate change and landscape homogenization is fundamental for our ability to predict how such anthropogenic stressors affect plant biodiversity. Models of pollinator potential are improved when based on pairwise plant-pollinator interactions and pollinator´s plant preferences. However, whether the sum of predicted pairwise interactions with a plant within a habitat (a proxy for pollination potential) relates to pollen deposition on flowering plants has not yet been investigated. We sampled plant-bee interactions in 68 Scandinavian plant communities in landscapes of varying land-cover heterogeneity along a latitudinal temperature gradient of 4–8 C°, and estimated pollen deposition as the number of pollen grains on flowers of the bee-pollinated plants Lotus corniculatus, and Vicia cracca. We show that plant-bee interactions, and the pollination potential for these bee-pollinated plants increase with landscape diversity, annual mean temperature, plant abundance, and decrease with distances to sand-dominated soils. Furthermore, the pollen deposition in flowers increased with the predicted pollination potential, which was driven by landscape diversity and plant abundance. Our study illustrates that the pollination potential, and thus pollen deposition, for wild plants can be mapped based on spatial models of plant-bee interactions that incorporate pollinator-specific plant preferences. Maps of pollination potential can be used to guide conservation and restoration planning.

Til dokument

Sammendrag

Aims To develop a methodology to study uptake and redistribution by plants of NH4+ from deep soil, applying it to investigate deep root N uptake by cultivated grassland species. Methods A slow-release 15NH4+ label adsorbed to clinoptilolite was placed into soil (depth 42 cm) well below the densest root zone in well-established monospecific stands of five grass and two clover species. Species showing a variety of deep rooting patterns, N acquisition strategy, forage qualities, and persistence in hemiboreal conditions were chosen. The label was placed in early spring and tracked throughout one or two growing seasons in two repeated experiments. Results After two growing seasons ~ 90% of the label was tracked in the soil and harvested herbage of grasses, less in clovers. Deep N uptake was limited in spring, increased during mid-season, and was strongest in autumn in all species, despite lower herbage yield in autumn. Species differed in ability to recover and maintain 15N in the soil–plant system. In one growing season, Lolium perenne L., Phleum pratense L., Schedonorus pratensis (Huds.) P.Beauv. and Schedonorus arundinaceus (Schreb.) Dumort herbage recovered ~ 65% of the label, Poa pratensis L. 54%, and Trifolium pratense L. and Trifolium repens L. 36–48%. Label transport to topsoil was observed, mainly attributable to plant nutrient redistribution rather than physical diffusion. Conclusions The innovative slow-release 15N label enabled tracing species differences and seasonal changes in uptake of NH4+ from deep soil. Among the tall-growing grasses, growth vigor appeared as important for deep N uptake as expected root depth.

Til dokument

Sammendrag

Stress on tree vitality is expected to increase due to climatic extremes in European forests. The decline in vitality of European beech (Fagus sylvatica L.) that has been reported recently, makes it necessary to rethink its future adaptive potential under ongoing climate change. Here we performed a pan European assessment of defoliation chronologies on 414 ICP Forests Level I beech plots, between 1995 and 2022. We investigated the temporal trends, spatial variation, tree-specific patterns as well as climate sensitivity of defoliation at plot level. Various trends emerged and we delineated the plots accordingly: 1) increasing defoliation trends indicating declining vitality (categorized as t1 plots); 2) no trends indicating stable crown condition (t2 plots); 3) decreasing defoliation trends indicating increase in vitality (t3 plots). Spatial variation was found among these plots but no regional grouping or clustering. Tree-specific patterns on 14 % plots were observed, characterized by an expressed population signal of < 0.85, indicating high inter-tree variability. Defoliation was found to be sensitive to climatic variables, mainly to temperature but also precipitation, albeit only for a small percentage of plots. Sensitivity was indicated by statistically significant (p<0.05) Pearson’s correlation coefficients. Moreover, this response depended on month of the year. Climate sensitivity of defoliation also varied across space and plots of different trend categories. It also differed along monthly water balance gradient, further indicating the role of site-specific water availability in mediating the responses to climatic variables. Our study provided basis for long-term defoliation studies, and is a crucial building block to assess beech vitality under potentially changing future climate. Furthermore, such studies will provide more insights into changes in sensitivity and adequate future sites for beech.

Til dokument

Sammendrag

The brown marine macroalga Alaria esculenta contains phlorotannins as polyphenolic compounds in its cell walls. This study aimed to understand their antioxidant effects on preserving the lipids in fillets of freshly-slaughtered farmed Atlantic salmon (Salmo salar). First, soluble phlorotannins were extracted from wild-grown population of A. esculenta in North Norway (Bodø) using solid/liquid extraction. A small-scale solid/liquid extraction (15 mg mL−1) with 70% acetone showed that 84% of total soluble phlorotannins (25.10 mg g−1 dry weight) were extracted after the first out of four extraction steps. In a large-scale extraction (3 mg 400 mL−1), the contents of soluble phlorotannins and the DPPH-based antioxidant capacities (measured as IC50) in 70% acetone- and water-based crude extracts were similar. Water is preferred extraction solvent for the following experiment because it complies with food safety standards, may minimise work procedures and is in accordance with the principles of Green Chemistry. Secondly, the antioxidant properties of the soluble phlorotannins were tested through incubating salmon fillets (Norwegian Quality Cuts) in water-based extracts. After six days of storage on ice, the peroxide value of Alaria-treated fillets was lower compared to the control (without Alaria-extract), while the p-anisidine and free fatty acid values remained unchanged. This indicates the phlorotannins’ inhibitory effect on the formation of primary rather than secondary lipid oxidation products. This study demonstrated that the antioxidant properties of the soluble phlorotannins extracted from A. esculenta using water can preserve the nutritional value of salmon fillets to extend the seafood’s shelf-life.

Til dokument

Sammendrag

Compared to fluctuating soil water (FW) conditions, stable soil water (SW) can increase plant water use efficiency (WUE) and improve crop growth and aboveground yield. It is unknown, however, how stable and fluctuating soil water affect root vegetables. Here, the effects of SW and FW were studied on cherry radish in a pot experiment, using negative pressure irrigation and conventional irrigation, respectively. The assessed effects included agronomic parameters, physiological indices, yield, quality and WUE of cherry radish. Results showed that under similarly average soil water contents, compared with FW, SW increased plant photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf proline content by 13.7–73.3% and malondialdehyde content by 12.5–40.0%, and increased soluble sugars content by 6.3–22.1%. Cherry radish had greater biomass accumulation and nutrient uptake in SW than in FW. Indeed, SW increased radish output by 34.6–94.1% with no influence on root/shoot ratio or root quality. In conclusion, soil water stability affected directly the water physiological indicators of cherry radish and indirectly its agronomic attributes and nutrient uptake, which in turn influenced the crop biomass and yield, as well as WUE. This study provides a new perspective for improving agronomy of root crops and WUE through managing soil water stability.

Til dokument

Sammendrag

Anaerobic digestion (AD), as a crucial technology for organic waste resource recovery, faces the challenge of low efficiency in converting high-load organic substance into biogas. In this study, high-load AD system with food waste and excess sludge as co-substrates was constructed. The effect and mechanism of carbon quantum dots (CQD) derived from straw in promoting the performance of AD systems have been studied. The oxidation pretreatment of straw with H2O2 and acetic acid increased the yield of hydrothermal synthesis CQD to approximately 40%. The effect of different CQD on CH4 yield performance was further explored. The cumulative CH4 yield performance of the fermenter was improved after adding CQD. The CQD synthesized from pretreated straw and the nitrogen-doped CQD synthesized using Chlorella as the nitrogen source showed competitive promotion performance, increasing cumulative CH4 yield by 17.71% and 8.87%, respectively. These CQD can effectively accelerate the degradation of dissolved organic matter and thus improve the CH4 yield performance, with the most significant effect of CQD synthesized from pretreated straw. Electrochemical analysis and the correlation analysis between microorganisms and performance parameters showed that these CQD established an electron conductive network to enhance the electron transfer of the system. This well conductive conditions enriched hydrogenotrophic methanogenic (Methanosarcina), electroactive bacteria (Clostridium_sensu_stricto_1), and hydrolytic-acidifying bacteria (norank_f__Bacteroidetes_vadinHA17). This study significantly enhanced the yield of straw-derived CQD through green methods, and deeply revealed the potential promoting mechanisms of biomass-derived CQD by investigating the correlation between system performance and microorganisms in high-load AD systems.