Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Phenolic compounds constitute one of the most important groups of the bioactive molecules in food plants. These compounds have received attention for their beneficial properties for human health and they also are involved in diverse important roles in plants, including signaling and defense against biotic and abiotic stress factors. Vaccinium berries are one of the richest sources of phenolic compounds of which flavonoid classes of anthocyanins, proanthocyanidins, flavonols in addition to hydroxycinnamic acids are the main phenolics in these species. Besides in berries, phenolic compounds are also present in other parts of the plant. Biosynthesis of flavonoids via the phenylpropanoid pathway is well understood and the key enzymes leading to different intermediates or different flavonoid classes have been characterized in many species including wild and cultivated Vaccinium species. At the molecular level, the biosynthesis is regulated via co-ordinated transcriptional control of the enzymes in the pathway by the interaction with transcription factors of the MYB-bHLH-WD40 (MBW) complex. Upstream regulators of the pathway have also been identified. The biosynthesis is controlled both at the level as well as by the surrounding environmental factors. Plant hormones are the key players in the development and the ripening process of the fruits. Especially abscisic acid (ABA) and methyl jasmonate (MeJA) have been shown to have a key role in the flavonoid metabolism of Vaccinium species. Accumulation of transcriptome, genome and metabolome data are currently increasing our understanding on the complicated regulation networks controlling the metabolism of the phenolic compounds in the Vaccinium species. This offers new tools for selection of the species and cultivars with preferred characteristics, for instance berries with higher health benefit potential or plants with better stress resistance.

Til dokument

Sammendrag

The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.

Til dokument

Sammendrag

The efficacy of currently available fungicides against apple scab, caused by the fungal pathogen Venturia inaequalis, was investigated in relation to when growers spray (ahead, during, or after rain) and how the spray reaches the target. The adaxial surface of individual leaves of potted trees were sprayed and then inoculated with ascospores of V. inaequalis, to establish dose-response curves for each fungicide. Discriminatory doses providing 50 and 90% symptom inhibition (EC50 and EC90, respectively) in sprays mimicking applications ahead of rain were used for experiments imitating alternative spray timings. Sprays were either applied during the spore germination phase or early or late after infection onset (either 336 or 672 degree-hours after inoculation, respectively), corresponding to grower spray schedules. Experiments were also carried out with sprays applied on the abaxial leaf surface to investigate fungicide efficacy through the leaf lamina. For all fungicides, the best efficacy was observed when sprays were applied during germination, followed by applications ahead of inoculation. Some products maintained equal or better efficacy at early infection, while efficacy in late infection dropped for all products, clearly indicating that this spray timing should be avoided. Some products with postinfection efficacy also showed translaminar efficacy. The close relationship found between EC50 of the active ingredients on potted trees and the label rate could help improve spraying decisions and reduce costs.

Sammendrag

I forbindelse med nydyrking på eiendom med bruksnummer og gårdsnummer 163/5 og 163/11 i Nes kommune er NIBIO engasjert for å planlegge og prosjektere fangdammer som skal rense avrenningsvann fra landbruksområdet som drenerer til bekken Drogga. Målet med anleggelsen av fangdammer er å minimere avrenning, forurensingseffekt og flompåvirkning på Drogga. Planlegging og detaljprosjektering av fangdammene er gjort med hensyn til nedbørsfeltet, terreng og perioder med flom. Det er prosjektert tre fangdammer, to sedimentasjonsdammer og sedimentasjonsdam med våtmarksfilter. Fangdamsystemet følger et søkk i terrenget hvor vannet naturlig drenerer mot. Sedimentasjonsdammene har areal på 1,9 og 1,2 daa og sedimentasjonsdammen med våtmarksfilter har et areal på 1 daa. Dette gir et samlet fangdamareal på 4,1 daa som oppfyller anbefaling om størrelse på fangdamareal i forhold til tilførende areal for avrenning.