Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Tree-killing bark beetles in conifer forests vector symbiotic fungi that are thought to help the beetles kill trees. Fungal symbionts emit diverse volatile blends that include bark beetle semiochemicals involved in mating and host localization. In this study, all 12 tested fungal isolates emitted beetle semiochemicals when growing in medium amended with linoleic acid. These semiochemicals included the spiroacetals chalcogran, trans-conophthorin and exo-brevicomin, as well as 2-methyl-3-buten-1-ol, the main aggregation pheromone component of the spruce bark beetle Ips typographus. The emission of these compounds was affected by the type of fatty acid present (linoleic vs. oleic acid). Accumulating evidence shows that the fatty acid composition in conifer bark can facilitate colonization by bark beetles and symbiotic fungi, whereas the fatty acid composition of non-host trees can be detrimental for beetle larvae or fungi. We hypothesize that beetles probe the fatty acid composition of potential host trees to test their suitability for beetle development and release of semiochemicals by symbiotic fungi.

Til dokument

Sammendrag

Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was −3.30 kg CH4-C ha−1 y−1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition, which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribution of the forest in mitigating global warming.

Sammendrag

Several studies conclude that permanent and temporary swards are equally productive, given equal management. In Norway, one experimental field trial has been maintained since 1974 (Fureneset; 61°18’N, 5°4’E). This ongoing experiment includes long-term/permanent ley (no-tillage over 25 and 45 years) next to temporary leys reseeded regularly. The objective of the study was to test reseeding/ renovation methods that may maintain long-term forage productivity. We hypothesized that sod seeding after chemical fallowing improves grassland productivity equally to that from reseeding after ploughing. In 2017, the frequently ploughed treatments, and half of the 25-year-old sward, were renewed by ploughing and reseeding with grass-clover seed mixtures. The second half of the 25-year-old sward was chemically fallowed and sod-seeded. The treatments included three different fertilizer strategies: mineral fertilizer (210 N kg ha-1) and cattle slurry in combination with mineral fertilizer (210 and 340 kg total-N kg ha-1). On average for four production years (2018-2021) the dry matter yield (DMY) of permanent sod-seeded 25-year-old ley was about 11 t ha-1, and these yields were equal to swards renewed by ploughing and reseeding.

Til dokument

Sammendrag

Mountain birch forest covers large areas in Eurasia, and their ecological resilience provides important ecosystem services to human societies. This study describes long-term stand dynamics based on permanent plots in the upper mountain birch belt in SE Norway. We also present forest line changes over a period of 70 years. Inventories were conducted in 1931, 1953, and 2007. Overall, there were small changes from 1931 up to 1953 followed by a marked increase in biomass and dominant height of mountain birch throughout the period from 1953 to 2007. In addition, the biomass of spruce (Picea abies) and the number of plots with spruce present doubled. The high mortality rate of larger birch stems and large recruitment by sprouting since the 1960s reveal recurrent rejuvenation events after the earlier outbreak of the autumnal moth (Epirrita autumnata). Our results demonstrate both a high stem turnover in mountain birch and a great ability to recover after disturbances. This trend is interpreted as regrowth after a moth attack, but also long-term and time-lagged responses due to slightly improved growth conditions. An advance of the mountain birch forest line by 0.71 m year−1 from 1937 to 2007 was documented, resulting in a total reduction of the alpine area by 12%. Most of the changes in the forest line seem to have taken place after 1960. Regarding silviculture methods in mountain birch, a dimension cutting of larger birch trees with a cutting interval of c. 60 years seems to be a sustainable alternative for mimicking natural processes.