Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2008

Til dokument

Sammendrag

In 2006, a rust was found on a 20-year-old ornamental perennial Telekia speciosa in Ås, Akershus county, Norway. Diseased plants exhibited chlorotic spots on the upper leaf surface and uredinia and telia on the lower side of the leaf. This is the first report of C. telekiae in Norway

Sammendrag

Rapporten oppsummerer inntrykk fra banen etter befaring, og peker på mulige sammenhenger mellom vekstmedium og soppskader på greenene. Problemområder på banen gjennomgås, og det pekes på mulige løsninger med tanke på investering og skjøtsel.

Sammendrag

Downy mildews represent some of the most important plant diseases in the production of several field vegetable crops in Norway. Disease outbreaks are difficult to predict since severity of the diseases and the first appearance of the pathogens can differ substantially between seasons. As part of an ongoing project, the initial sources of inoculum for downy mildews of onion (Peronospora destructor), lettuce (Bremia lactucae) and cucumber (Pseudoperonospora cubensis) is investigated to ensure the use of appropriate control measures for these diseases in Norway. Necrotic leaf tissue from infected plants has been examined for the presence of oospores. Oospores have so far been found profusely in lettuce and sparsely in onion, but not in cucumber. Other aspects that are surveyed are the distribution of spores in air. Spore traps are used to identify both the initial appearance of inoculum, and the presence and amount of spores over a field. To determine spore quantities, real-time PCR has been applied to analyze daily spore catch. These results were compared to data from parallel spore traps where hourly numbers of spores are enumerated by use of microscope. An attempt to backtrack an early infection of P. cubensis was made by producing trajectories to show where possible sources of infection may be located in the case of long distance distribution of spores by air. This work will be continued in 2008 and 2009, and the results will be used for better forecasting of downy mildew pathogens in Norway.

Sammendrag

Aerial dispersal of inoculum is critical to the spread of many plant diseases; including potato late blight (Phytophthora infestans (Pi)), lettuce downy mildew (Bremia lactucae (Bl)) and cucurbit downy mildew (Pseudoperonospora cubensis (Pc)). In addition to relative humidity and temperature, spore survival during aerial dispersal is affected by solar irradiation (SI), in particular during long-distance transport at higher altitudes. We evaluated the potential survival of spores in air by placing detached spores of Pi, Bl and Pc on filter paper in either direct sun or shade at time intervals from 0.5 to 3 h (Pi and Bl), or up to 42 hours (Pc). Thereafter, the filter papers were placed in moist chambers for 15 min prior to incubation on pea agar (Pi) or water agar (Bl and Pc) for 24 h, before the viable spores were enumerated. Spores were considered viable if they exhibited a germ tube or released zoospores. Preliminary results show that no spores of Pi, Bl and Pc germinated after 1, 3 and 30 h exposure to direct sun, with critical SI doses near 700, 2000 and 8500 Wm-2, respectively. In shade, no Pi spores germinated after 3 h, while spores of Bl and Pc were still viable after 3 and 42 h, respectively. In Norway, the potential for long distance distribution of Pi is restricted, but more likely for Bl and Pc. Further experiments will be conducted to find the maximum survival time for spores of these pathogens under Norwegian climatic conditions.

Sammendrag

Aerial dispersal of inoculum is critical to the spread of many plant diseases; including potato late blight (Phytophthora infestans (Pi)), lettuce downy mildew (Bremia lactucae (Bl)) and cucurbit downy mildew (Pseudoperonospora cubensis (Pc)). In addition to relative humidity and temperature, spore survival during aerial dispersal is affected by solar irradiation (SI), in particular during long-distance transport at higher altitudes. We evaluated the potential survival of spores in air by placing detached spores of Pi, Bl and Pc on filter paper in either direct sun or shade at time intervals from 0.5 to 3 h (Pi and Bl), or up to 42 hours (Pc). Thereafter, the filter papers were placed in moist chambers for 15 min prior to incubation on pea agar (Pi) or water agar (Bl and Pc) for 24 h, before the viable spores were enumerated. Spores were considered viable if they exhibited a germ tube or released zoospores. Preliminary results show that no spores of Pi, Bl and Pc germinated after 1, 3 and 30 h exposure to direct sun, with critical SI doses near 700, 2000 and 8500 Wm-2, respectively. In shade, no Pi spores germinated after 3 h, while spores of Bl and Pc were still viable after 3 and 42 h, respectively. In Norway, the potential for long distance distribution of Pi is restricted, but more likely for Bl and Pc. Further experiments will be conducted to find the maximum survival time for spores of these pathogens under Norwegian climatic conditions.

Sammendrag

Downy mildews represent some of the most important plant diseases in the production of several field vegetable crops in Norway. Disease outbreaks are difficult to predict since severity of the diseases and the first appearance of the pathogens can differ substantially between seasons. As part of an ongoing project, the initial sources of inoculum for downy mildews of onion (Peronospora destructor), lettuce (Bremia lactucae) and cucumber (Pseudoperonospora cubensis) is investigated to ensure the use of appropriate control measures for these diseases in Norway. Necrotic leaf tissue from infected plants has been examined for the presence of oospores. Oospores have so far been found profusely in lettuce and sparsely in onion, but not in cucumber. Other aspects that are surveyed are the distribution of spores in air. Spore traps are used to identify both the initial appearance of inoculum, and the presence and amount of spores over a field. To determine spore quantities, real-time PCR has been applied to analyze daily spore catch. These results were compared to data from parallel spore traps where hourly numbers of spores are enumerated by use of microscope. An attempt to backtrack an early infection of P. cubensis was made by producing trajectories to show where possible sources of infection may be located in the case of long distance distribution of spores by air. This work will be continued in 2008 and 2009, and the results will be used for better forecasting of downy mildew pathogens in Norway.

Sammendrag

Bladskimmel utgjør noen av de viktigste plantesjukdommene i norske frilandsgrønnsaker. Sjukdomsutbrudd er vanskelige å forutse siden angrepsgrad og tidspunkt for første funn av patogenene kan variere fra sesong til sesong. Som del av et pågående prosjekt har smittekilder for bladskimmel i løk (Peronospora destructor), salat (Bremia lactucae) og agurk (Pseudoperonospora cubensis) blitt undersøkt for å sikre at riktige tiltak for kontroll gjennomføres. Forekomst av oosporer i blad og fordeling av sporer i luft har vært undersøkt. Dette arbeidet fortsettes i 2008 og 2009, og resultatene skal brukes til utvikling av bedre varsling av bladskimmelpatogener i Norge.