Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Vaccinium berries include several economically important cultivated and wild species such as blueberries, cranberries, bilberries and lingonberries. These species are recognized for the various health beneficial properties, which are generally linked to the high yields and the complex profile of flavonoids in the berries, including anthocyanin, proanthocyanidin, and flavonol classes of flavonoids. Anthocyanins are one of the main pigments in plants contributing to the characteristic reddish to bluish colours in flowers and fruits. Most important anthocyanins are glucosides of six common aglycons: cyanidins, delphinidins, pelargonidins, petunidins, peonidins and malvidins. Of these, delphinidin branch anthocyanins, namely delphinidins, petunidins, and malvidins are responsible of bluish colours in blue Vaccinium berries. The biosynthesis of anthocyanins has been intensively studied, and the structural enzyme genes responsible of the specific steps of the pathway have been characterised also in diverse Vaccinium species. For the delphinidin branch, flavanone 3’5’ hydroxylase (F3’5’H) is the key enzyme for the branching point towards bluish anthocyanins. Our recent results both from controlled and field experiments have revealed new information on the key regulators controlling the different branches of the anthocyanin biosynthesis in blue-coloured berries. Transcriptome analyses combined with metabolite results have identified signaling routes leading to increase in delphinidin branch anthocyanins. Our results show that the anthocyanin composition in blue Vaccinium berries could be modified by specific environmental factors.

Til dokument

Sammendrag

The aim of this study was to find the chemical parameters for the differentiation of plum cultivars grown along the fjord areas of Western Norway and Eastern Norway, having specific agroclimatic conditions. Chemical analysis of the fruits confirmed the contents of 13 quantified elements, 22 sugar compounds, 11 organic acids, 19 phenolic compounds, and antioxidant activity in 68 plum cultivars. Dominated contents were noted for nitrogen (with the maximum mean value of 3.11%), potassium (8055.80 mg/kg), and phosphorous (7878.88 mg/kg). Averagely, the highest level of sugars was determined for glucose (244.46 g/kg), fructose (197.92 g/kg), sucrose (208.25 g/kg), and sorbitol (98.02 g/kg), organic acids for malic acid (24.06 g/kg), and for polyphenol compounds were 5-O-caffeoylquinic acid (66.31 mg/kg), and rutin (58.06 mg/kg). Applied principal component analysis has been useful for distinguishing the plum cultivars from three areas in Norway where copper, iron, potassium, magnesium, manganese, and sodium; sucrose, ribose, maltose, and raffinose; p-hydroxybenzoic acid, rutin, ferulic acid, kaempferol 7-O-glucoside, p-coumaric acid, and 5-Ocaffeoylquinic acid were the most influential. In regard to human health and future breeding work that will have the aim to produce functional food with high health-related compounds, the plum cultivar ‘Mallard’ should be underlined due to the high level of elements, ‘Valor’ due to high sugar content, ‘Helgøyplomme’ due to content of organic acids, and ‘Diamond’ due to the content of phenolic compounds.