Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2012

Sammendrag

The combined effects of light, soil fertility, and ontogenetic changes on plant growth rates are poorly understood, yet these three factors play fundamental roles in structuring plant communities. We sought to determine how lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia), interior spruce (Picea glauca engelmanii (Moench) Voss), and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) sapling growth responds to the combination of light, soil fertility, and ontogeny and how these three dominant conifer species in sub-boreal forests of British Columbia differ in their responses.Using maximum likelihood methods, we found that 0.204 m tall sapling growth rates changed during ontogeny and were limited by both light and soil resources. The strongest differences among species growth rates were due to tree size, with smaller differences due to soil fertility, and there were no differences among species in the shape of their growth responses to light. Rank order in growth rates for small saplings (pine spruce fir) inversely corresponded to classic shade-tolerance ratings, thus supporting the carbon balance theory. Interior spruce height growth rates increased relative to lodgepole pine with increasing soil fertility, clearly matching the landscape-scale increase in canopy dominance of interior spruce over lodgepole pine with increasing soil fertility.

Til dokument

Sammendrag

This study aimed to investigate mycotoxin contamination of cereal grain commodities for feed and food production in North Western Europe during the last two decades, including trends over time and co-occurrence between toxins, and to assess possible effects of climate on the presence of mycotoxins. For these aims, analytical results related to mycotoxin contamination of cereal grain commodities, collected in the course of national monitoring programmes in Finland, Sweden, Norway and the Netherlands during a 20-year period, were gathered. Historical observational weather data, including daily relative humidity, rainfall and temperature, were obtained from each of these four countries. In total 6382 records, referring to individual sample results for mycotoxin concentrations (one or more toxins) in cereal grains were available. Most records referred to wheat, barley, maize and oats. The most frequently analysed mycotoxins were deoxynivalenol, 3-acetyl-deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin and zearalenone. Deoxynivalenol had the highest overall incidence of 46%, and was mainly found in wheat, maize and oats. Mycotoxins that showed co-occurrence were: deoxynivalenol and 3-acetyl-deoxynivalenol in oats; deoxynivalenol and zearalenone in maize and wheat; and T-2 toxin and HT-2 toxin in oats. The presence of both deoxynivalenol and zearalenone in wheat increased with higher temperatures, relative humidity and rainfall during cultivation, but the presence of nivalenol was negatively associated with most of these climatic factors. The same holds for both nivalenol and deoxynivalenol in oats. This implies that climatic conditions that are conducive for one toxin may have a decreasing effect on the other. The presence of HT-2 toxin in oats showed a slight decreasing trends over time, but significant trends for other toxins showed an increasing presence during the last two decades. It is therefore useful to continue monitoring of mycotoxins. Obtained results can be used for development of predictive models for presence of mycotoxins in cereal grains.