Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2013
Forfattere
Jane Uhd Jepsen Erik Martin Biuw Rolf Anker Ims Lauri Teemu Kapari Tino Schott Ole Petter Laksforsmo Vindstad Snorre HagenSammendrag
Insect outbreaks in northern-boreal forests are expected to intensify owing to climate warming, but our understanding of direct and cascading impacts of insect outbreaks on forest ecosystem functioning is deficient. The duration and severity of outbreaks by geometrid moths in northern Fennoscandian mountain birch forests have been shown to be accentuated by a recent climatemediated range expansion, in particular of winter moth (Operophtera brumata). Here, we assess the effect of moth outbreak severity, quantified from satellite-based defoliation maps, on the state of understory vegetation and the abundance of key vertebrate herbivores in mountain birch forest in northern Norway. We show that the most recent moth outbreak caused a regional-scale state change to the understory vegetation, mainly due to a shift in dominance from the allelopathic and unpalatable dwarf-shrub Empetrum nigrum to the productive and palatable grass Avenella flexuosa. Both these central understory plant species responded significantly and nonlinearly to increasing outbreak severity. We further provide evidence that the effects of the outbreak on understory vegetation cascaded to cause strong but opposite impacts on the abundance of the two most common herbivore groups. Rodents increased with defoliation, largely mirroring the increase in A. flexuosa, whereas ungulate abundance instead showed a decreasing trend. Our analyses also suggest that the response of understory vegetation to defoliation may depend on the initial state of the forest, with poorer forest types potentially allowing stronger responses to defoliation
Sammendrag
Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6 M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH <10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87 - 918 μg L−1 (day 3) to 18–69 μg L−1 (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Christian Guido Bruckner Kerstin Mammitzsch Günter Jost Juliane Wendt Matthias Labrenz Klaus JürgensSammendrag
Pelagic marine oxygen-depleted zones often exhibit a redox gradient, caused by oxygen depletion due to biological demand exceeding ventilation, and the accumulation of reduced chemical species, such as hydrogen sulfide. These redox gradients harbour a distinct assemblage of epsilonproteobacteria capable of fixing carbon dioxide autotrophically in the dark and potentially of utilizing hydrogen sulfide chemolithotrophically by oxidation with nitrate. Together, these two processes are referred to as chemolithoautotrophic denitrification. The focus of this study was the recently isolated and cultivated representative strain of pelagic epsilonproteobacteria, 'Sulfurimonas gotlandica' strain GD1, specifically dark carbon dioxide fixation and its substrate turnovers during chemolithotrophic denitrification. By connecting these processes stoichiometrically and comparing the results with those obtained for dark carbon dioxide fixation and nutrient concentrations measured in pelagic redox gradients of the Baltic Sea, we were able to estimate the role of chemolithoautotrophic denitrification in the environment. Evidence is provided for a defined zone where chemolithoautotrophic denitrification of these epsilonproteobacteria allows the complete removal of nitrate and hydrogen sulfide from the water column. This water layer is roughly equivalent in thickness to the average overlapping region of the two substrates, but slightly larger. Such a difference may be explained by a variety of reasons, including, e.g. utilization of substrates present at concentrations below the detection limit, alternative usage of other substrates as thiosulfate or nitrous oxide, or comparable activities of other microbes. However, the combined results of in vitro and in situ studies strongly suggest that epsilonproteobacteria are primarily responsible for hydrogen sulfide and nitrate removal from pelagic Baltic Sea redox gradients.
Forfattere
Prasanna Lakshmi Ganggavaramu Vincent Eijsink Richard Meadow Sigrid GåseidnesSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Merete Dees Arild Sletten Arne HermansenSammendrag
Det er ikke registrert sammendrag
Forfattere
Ole Tobias Rannestad Amon P. Maerere Torfinn Torp May SæthreSammendrag
Det er ikke registrert sammendrag
Forfattere
Joahnne E. Schjøth Leif SundheimSammendrag
Det er ikke registrert sammendrag