Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2013
Forfattere
Kerry O'Donnell Alejandro P. Rooney Robert Proctor Daren W. Brown Susan P. McCormick Todd J. Ward Rasmus J. N. Frandsen Erik Lysøe Stephen A. Rehner Takayuki Aoki Vincent A.R.G Robert Pedro W. Crous Johannes Z. Groenewald Seogchan Kang David M. GeiserSammendrag
Det er ikke registrert sammendrag
Forfattere
Jonathan Lenoir Bente Jessen Graae Per Arild Aarrestad Inger Greve Alsos William Scott Armbruster Gunnar Austrheim Claes Bergendorff Harry John Betteley Birks Kari Anne Bråthen Jörg Brunet Hans Henrik Bruun Carl Johan Dahlberg Guillaume Decocq Martin Diekmann Mats Dynesius Rasmus Ejrnæs John-Arvid Grytnes Kristoffer Hylander Kari Klanderud Miska Luoto Ann Milbau Mari Moora Bettina Nygaard Arvid Odland Virve Ravolainen Stefanie Reinhardt Sylvi Marlen Sandvik Fride Høistad Schei James David Mervyn Speed Unn Tveraabak Vigdis Vandvik Liv Guri Velle Risto Virtanen Martin Zobel Jens-Christian SvenningSammendrag
Recent studies from mountainous areas of small spatial extent (<2,500 km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2,500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT), and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1,000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically- and geographically-derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 60-65°N and increased with terrain roughness, averaging 1.97°C (SD = 0.84°C) and 2.68°C (SD = 1.26°C) within the flattest and roughest units, respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32°C km-1) than spatial turnover in growing-season GiT (0.18°C km-1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Theo RuissenSammendrag
Det er ikke registrert sammendrag
Forfattere
Randi Seljåsen Hanne L. Kristensen Charlotte Lauridsen Gabriela S Wyss Ursula Kretzschmar Inés Birlouez-Aragone Johannes KahlSammendrag
Det er ikke registrert sammendrag
Forfattere
Matteo Balderacchi Pierre Benoit Philippe Cambier Ole Martin Eklo Alessandro Gargini Alexandra Gemitzi Melike Gurel Bjørn Kløve Zoran Nakic Elena Preda Stanko Ruzicic Przemyslaw Wachniew Marco TrevisanSammendrag
Det er ikke registrert sammendrag
Forfattere
Jan Inge Jenssen Erlend NybakkSammendrag
Published version of article from the journal: International Journal of Innovation Management
Forfattere
Ivano Brunner Mark R. Bakker Robert G. Björk Yasuhiro Hirano Martin Lukac Xavier Aranda Isabella Børja Toril Eldhuset Heljä-Sisko Helmisaari Christophe Jourdan Bohdan Konôpka Bernat Claramunt López Carolina Miguel Pérez Hans Persson Ivika OstonenSammendrag
Background and Aims: Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods: We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results: Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions: We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.
Forfattere
Jan Karstein Henriksen Arnfinn NesSammendrag
Det er ikke registrert sammendrag