Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Sammendrag

Increasing species diversity often promotes ecosystem functions in grasslands, but sward diversity may be reduced over time through competitive interactions among species. We investigated the development of species’ relative abundances in intensively managed agricultural grassland mixtures over three years to identify the drivers of diversity change. A continental-scale field experiment was conducted at 31 sites using 11 different four-species mixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelled the dynamics of the four-species mixtures over the three-year period. The relative abundances shifted substantially over time; in particular, the relative abundance of legumes declined over time but stayed above 15% in year three at many sites. We found that species’ dynamics were primarily driven by differences in the relative growth rates of competing species and secondarily by density dependence and climate. Alongside this, positive diversity effects in yield were found in all years at many sites.

Sammendrag

Weed suppression was investigated in a field experiment across 31 international sites. The study included 15 plant communities at each site, based on two grasses and two legumes, each sown in monoculture and 11 four-species mixtures varying in the relative proportions of the four species. At each site, one grass and one legume species was selected as fast establishing and the other two species were selected for persistence. Average weed biomass in mixtures over the whole experiment was 52% less (95% confidence interval, 30 to 75%) than in the most suppressive monoculture (transgressive suppression). Transgressive suppression of weed biomass persisted over each year for each mixture. Weed biomass was consistently low and relatively similar across all mixtures and years. Average sown species biomass was greater in all mixtures than in any monoculture. The suppressive effect of sown forage species on weeds in mixtures was achieved without any herbicide use. At each site, weed biomass for almost every mixture was lower than the average across the four monocultures. The average proportion of weed biomass in mixtures was less than in the most suppressive monoculture in two thirds of sites. Mixtures outyielded monocultures, and mixture yield comprised far lower weed biomass.

Sammendrag

Knowledge about the botanical composition of grassland for silage is important regarding composition of seed mixtures, control of weeds, choice of harvest times and feeding strategies. The botanical composition of 185 fields in the mountain regions of southern Norway was examined using the dryweight rank method. The survey shows that the youngest grasslands (age 1 - 3 years) were dominated by the sown species with Phleum pratense L. the species with the highest proportion in the sward. In 4 - 6 year old grasslands, the proportion of sown species was reduced with the exception of Poa pratensis L., and Elytrigia repens L. had the highest proportion of unsown species. The proportion of Festuca pratensis (Huds.) was reduced at the same rate as Phleum pratense L. In grasslands of greater age (> 6 years) Poa pratensis L. and Elytrigia repens L. had the highest occurrence. The content of herbs increased with age, and Ranunculus repens L. and Taraxacum officinale F.H. Wigg were the most frequent species. The average clover content was < 6% of DM yield. The impact of Elytrigia repens L. on forage yield and quality should be further examined due to the high occurrence. Poa pratensis L. or other long-lasting grass species should be included in seed mixtures for this region when the grassland is intended to last more than three years.

Sammendrag

Previous studies estimating TFP and its components have been criticized for not considering farm heterogeneity in their model. Moreover, the studies focused on the technical evaluation of a sector. However, the technical evaluation alone reveals how well farmers use the physical production process. There is a need to closely examine the cost efficiency of the farmers. In this study, we used a cost function (dual) approach to facilitating the decomposition and estimation of TFP components. Using a translog stochastic cost function, we estimated the level and source of productivity and profitability change for crop producing family firms in Norway. We used the true random effect to account for farm heterogeneity. The analysis is based on 23 years unbalanced panel data (1991-2013) from 455 crop- producing firms with a total of 3885 observations. The result indicates that average annual productivity growth rate in grain and forage production was - 0.11 % per annum during the period 1991-2013. The profit change was 0.14 % per annum.