Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2013

Til dokument

Sammendrag

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Til dokument

Sammendrag

To investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription–polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.) Karsten, and isolated and sequenced PCR products for five P. obovata DHNs. Three protein bands of 53, 35 and 33 kDa were detected on western blots of SDS–PAGE-separated protein extracts. The 53-kDa DHN was already present late in the growing season, but accumulated during acclimation, and levels decreased rapidly during deacclimation. The 33- and 35-kDa proteins, identified as Picg5 class DHNs by mass spectrometry, first appeared in detectable amounts late in the acclimation process and remained at detectable levels throughout the period of maximum LT tolerance. Levels of the 53-kDa DHN correlated with two LT tolerance parameters, while results for the 33- and 35-kDa proteins were equivocal due to limited sample size and variation in LT tolerance during the mid-winter period. Three additional bands of 30, 28 and 26 kDa were detected in extracts from needles collected in November 2010 using an immunity-purified antibody. Immunoblotting of two-dimensional gel electrophoresis gels loaded with proteins extracted from October and November samples corroborated the results obtained by SDS–PAGE western blots. One large spot in the 53 kDa range and two trains of spots in the same size range as the 33 and 35 kDa DHNs were detected using the K-segment antibody. Eight of the nine DHN transcripts closely tracked LT tolerance parameters, whereas the ninth DHN transcripts followed a reverse pattern, decreasing during winter and increasing again during deacclimation. Multiple regression models using principal components of the transcripts to predict two different LT tolerance parameters suggest separate but overlapping functions for different DHNs in establishing and maintaining extreme LT tolerance.

Til dokument

Sammendrag

Retention of selected trees in clear-felling areas has become an important conservation measure in managed forests. Trees with large size or high age are usually preferred as retention trees. In this paper we investigated whether a single large or several small trees should be left in clear-felling areas to serve as life boats and future habitat for epiphytic species. The focal species were 25 Lobarion epiphytic lichens hosted by aspen (Populus tremula). We analyzed the relationships between: (1) proportion of trees colonized and tree size, (2) number of lichen thalli (lichen bodies) and aspen area, and (3) number of lichen species and aspen area, for 38 forest sites. Mixed effect models and rarefaction analyzes showed that large and small host trees had the same proportion of trees colonized, the same number of thalli, and the same species richness for the same area of aspen bark. This indicates that larger aspens do not have qualities, beyond size, that make them more suitable for Lobarion lichens than smaller sized aspen trees. None of the species, not even the red-listed, showed any tendencies of being dependent on larger aspens, and our results therefore did not support a strategy of retaining only large and old trees for conservation of epiphytic Lobarion lichens. Additionally, young aspens have a longer expected persistence than old aspens. However, old retention trees might be important for other species groups. We therefore recommend a conservational strategy of retaining a mixed selection of small/young and large/old aspens.

Til dokument

Sammendrag

Access to sufficient quantities of water of acceptable quality is a basic need for human beings and a pre-requisite to sustain and develop human welfare. In cases of limited availability, the allocation of water between different sectors can result in conflicts of interests. In this study, a modified version of the Building Block Methodology (BBM) was demonstrated for allocation of waters between different sectors. The methodology is a workshop-based tool for assessing water allocation between competing sectors that requires extensive stakeholder involvement. The tool was demonstrated for allocation of water in the Sri Ram Sagar water reservoir in the Godavari Basin, Andhra Pradesh, India. In this multipurpose reservoir, water is used for irrigation, drinking water supply and hydropower production. Possible water allocation regimes were developed under present hydrological conditions (normal and dry years) and under future climate change, characterized by more rain in the rainy season, more frequent droughts in the dry season and accelerated siltation of the reservoir, thus reducing the storage capacity. The feedback from the stakeholders (mainly water managers representing the various sectors) showed that the modified version of the BBM was a practical and useful tool in water allocation, which means that it may be a viable tool for application also elsewhere.