Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2015

Til dokument

Sammendrag

As societies urbanize, a growing proportion of the global population and an increasing number of housing units will be needed in urban areas. High-rise buildings and environmentally friendly, renewable materials must play important roles in sustainable urban development. To achieve this, it is imperative that policy makers, planners, architects, and construction companies understand consumer preferences. We use data from urban dwellers in the Oslo region of Norway to develop an understanding of material preferences in relation to environmental attitudes and knowledge about wood. We emphasise wood compared with other building materials in various applications (structural, exterior, and interior) within urban apartment blocks. We use 503 responses from a web panel. Our findings show that Oslo area consumers tend to prefer materials other than wood in various applications in apartment blocks, especially structural applications. Still, some respondent prefer wood, including some applications in apartment blocks where wood is currently not commonly used. The best target for wood-based urban housing includes younger people who have strong environmental values. As environmental attitudes evolve in society and a greater proportion of consumers search out environmentally friendly product alternatives, the opportunities for wood to gain market share will most likely increase.

Sammendrag

Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Østfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.