Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Forfattere
Trygve S. Aamlid Anne Falk Øgaard Karin Juul Hesselsøe T. Krogstad M. Woods Yajun Chen K. Sintorn N. Dokkuma Wolfgang Prämassing D. CleaverSammendrag
Det er ikke registrert sammendrag
Forfattere
Trygve S. Aamlid Pia Heltoft Thomsen Tatsiana Espevig Gudni Thorvaldsson Anne Mette Dahl Jensen Karin Juul Hesselsøe Wendy Marie Waalen T. K. Petersen Trond Olav Pettersen Jan Tangsveen P. Sørensen Tania Gneist Bjarni HannessonSammendrag
Det er ikke registrert sammendrag
Forfattere
Alexander N. Shikov Vera M. Kosman Elena V. Flissyuk Irina E. Smekhova Abdelhameed Elameen Olga N. PozharitskayaSammendrag
The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett–Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5–1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models.
Sammendrag
Sweet potato (Ipomoea batatas L. Lam) has become one of the staple crops in Africa in the last 20 years. In Ethiopia, sweet potato is the second most widely grown root crop and is the first regarding the production per hectare. Thus, there is a great demand of planting material throughout the country. Currently, planting material is usually obtained from own previous season harvest, local markets or from the neighboring fields since no certified clean planting material production scheme has been established in Ethiopia yet. Unfortunately, this practice has contributed to the spread of viral diseases throughout the country. Elimination of viruses from infected plants is a tedious job, which requires efficient methods to eliminate the virus and also to verify that the plants are indeed virus-free. In the case of sweet potato, it was observed that heat treatment, combined with meristem tip culture is an efficient method for virus elimination. Previous findings indicate that reverse transcription (RT) PCR is more efficient than ELISA to verify the efficiency of virus elimination. In this study, the use of next generation sequencing (NGS) was explored as a verification method and compared with RT-PCR. The results show that NGS seems to be more efficient than RT-PCR, although also prone to inconclusive results.
Sammendrag
The triploid pear cultivar ‘Ingeborg’ is currently the main commercial pear cultivar grown in Norway. However, fruit set and subsequent yields of this cultivar have proven to be variable and overall rather low. In order to promote the fruit set, different bioregulators were applied during and after bloom and compared with an untreated control. Investigations were done during the period 2017-2018, at NIBIO Ullensvang, western Norway. Different dosages of both gibberellins (GA3, trade name GIBB 3, 10% active ingredient (a.i.) and GA4/7, trade name Novagib®, 1% a.i.) were applied at full bloom and at petal fall. Additional applications of the growth retardant prohexadioneCa (trade name Regalis®, 10% a.i.) were applied twice, when bourse shoots had 3-5 leaves and after one month later. Ethephon (Cerone (480 g a.i. L-1)) was applied three times starting about 7 days after petal fall with ca. 7- to 10-day intervals. All gibberellin applications significantly increased fruit set compared to the untreated control. One single application with GA3 (3 g ha-1) almost tripled the fruit number per 100 flower clusters when compared with the control (136 and 46, respectively). The yield response was similar (16.8 to 9.6 kg tree-1, respectively). Similar results occurred with one application of GA4/7 (12 g ha-1) with the same crop load level, and the fruit weights were similar to the control (130 g). Prohexadione-Ca treatments significantly reduced shoot growth of the pear trees. Two treatments with 125 g ha-1 or one treatment of 250 g ha-1 reduced the growth by ~35% but had no significant effect on fruit set and yield. The multiple ethephon applications (275 mL ha-1 in total) had no effect on both set and shoot growth, and return bloom compared to the untreated or gibberellin treated trees.
Forfattere
Lise Nistrup Jørgensen Niels Matzen Andrea Ficke Ghita C. Nielsen Marja Jalli Antanas Ronis Björn Andersson Annika DjurleSammendrag
Risk models for decisions on fungicide use based on weather data, disease monitoring, and control thresholds are used as important elements in a sustainable cropping system. The need for control of leaf blotch diseases in wheat (caused by Zymoseptoria tritici, Parastagonospora nodorum and Pyrenophora tritici-repentis) vary significantly across years and locations. Disease development is mainly driven by humidity events during stem elongation and heading. Two risk models were tested in field trials in order to identify situations favourable for the development of leaf blotch diseases in Lithuania, Norway, Sweden, Finland and Denmark. The Crop Protection Online (CPO) model uses days with precipitation (>1 mm), while the humidity model (HM) uses 20 continuous hours with relative humidity (RH) ≥ 85% as criteria for the need of a fungicide application. Forty-seven field trials were carried out during two seasons to validate these two risk-models against reference fungicide treatments. The season 2018 was dry and 2019 had an average precipitation profile. The two risk models with few exceptions provided acceptable disease control. In 2018, very few treatments were recommended by the models, saving 85–98% of treatments compared to the reference treatments, while in the wetter season 2019, 31% fewer applications were recommended. Based on specific criteria including fungicide input and net yield responses the models gave correct recommendations in 95% of the trials in 2018 and in 54–58% of the trials in 2019 compared with reference treatments dominated by 2–3 sprays. In comparison with single spray references, the models gave correct recommendations in 54–69% of the situations.
Forfattere
Yongjie Kuang Shaofang Li Bin Ren Fang Yan Carl Jonas Jorge Spetz Xiangju Li Xueping Zhou Huanbin ZhouSammendrag
Recently developed CRISPR-mediated base editors, which enable the generation of numerous nucleotide changes in target genomic regions, have been widely adopted for gene correction and generation of crop germplasms containing important gain-of-function genetic variations. However, to engineer target genes with unknown functional SNPs remains challenging. To address this issue, we present here a base-editing-mediated gene evolution (BEMGE) method, employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA (sgRNA) library tiling the full-length coding region, for developing novel rice germplasms with mutations in any endogenous gene. To this end, OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bombardment-mediated transformation. Four different types of amino acid substitutions in the evolved OsALS1, derived from two sites that have never been targeted by natural or human selection during rice domestication, were identified, conferring varying levels of tolerance to the herbicide bispyribac-sodium. Furthermore, the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing with the corresponding base editor and sgRNA. Collectively, these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.
Sammendrag
As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on lands in various states of natural transition to a forest dominated by deciduous broadleaved tree species. Given the aspiration to bring emissions on balance with removals in the latter half of the 21st century in effort to limit the global mean temperature rise to “well below” 2°C, the effectiveness of such a policy is unclear given relatively low spruce growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counteract the benefits of an enhanced forest CO2 sink in high-latitude regions. Here, we carry out a rigorous empirically based assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale spruce planting in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting tCDR, yet given low forest growth rates in the region, notable tCDR benefits from such projects would not be realized until the second half of the 21st century, with maximum benefits occurring even later around 2150. We estimate Norway's total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (±240) and 852 (±295) Mt CO2-eq. at mean net present values of US$ 12 (±3) and US$ 13 (±2) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway's total current annual production-based (i.e., territorial) CO2-eq. emissions.
Sammendrag
The aim of this work was to calculate farm specific LCAs for milk-production on 200 dairy farms in Central Norway, where 185 farmed conventional and 15 according to organic standards. We assume that there are variations in environmental emission drivers between farms and therefore also variation in indicators. We think that information can be utilized to find management improvements on individual farms. Farm specific data on inputs and production for the calendar years 2014 to 2016 were used. The LCAs were calculated for purchased products and on farm-emissions, including atmospheric deposition, biological nitrogen fixation, use of fertilizer and manure. The enteric methane emission from digestion was calculated for different animal groups. The functional unit was one kg energy- corrected milk (ECM) delivered at farm-gate. For the 200 dairy farms there were huge variations of farm characteristics, environmental per- formance and economic outcome. On average, the organic farms produced milk with a lower carbon footprint (1.2 kg CO2 eq./kg ECM) than the conventional ones (1.4 kg CO2 eq./kg ECM). The organic farms had also a lower energy intensity (3.1 MJ/kg ECM) and nitrogen intensity (5.0 kg N/kg N) than their conventional colleagues (4.1 MJ/kg ECM and 6.9 kg N/kg N respectively). The contribution margin was better on the organic farms with 6.6 NOK/kg ECM compared to the conventional with 5.9 NOK/kg ECM. The average levels of the environmental indicators were comparable but slightly higher than findings in other international studies. The current study proved that the FARMnor model allows to calculate LCAs for large number of individual farms. The results show that the environmental performance and economic outcome vary between farms. We recommend that farm specific LCA-results are used to unveil what needs to be changed for improving a farm’s environmental performance.
Forfattere
Bo Liu Keith Davies Avice HallSammendrag
Silicon is found in all plants and the accumulation of silicon can improve plant tolerance to biotic stress. Strawberry powdery mildew (Podosphaera aphanis) and two-spotted spider mite (Tetranychus urticae) are both detrimental to strawberry production worldwide. Two field trials were done on a UK commercial strawberry farm in 2014 and 2015, to assess the effects of silicon nutrient applied via the fertigation system on P. aphanis and T. urticae. The silicon treatments decreased the severity of both P. aphanis and T. urticae in two consecutive years on different cultivars. The percentage leaf area infected with P. aphanis mycelium from silicon treated plants were 2.19 (in 2014) and 0.41 (in 2015) compared with 3.08 (in 2014) and 0.57 (in 2015) from the untreated plants. The etiology of the pathogen as measured by the Area Under the Disease Progress Curve from silicon (with and without fungicides) treatments was 152.7 compared with 217.5 from non-silicon (with and without fungicides) treatments for the overall period of 2014–2015. The average numbers of T. urticae recorded on strawberry leaves were 1.43 (in 2014) and 1.83 (in 2015) in plants treated with silicon compared with 8.82 (in 2014) and 6.69 (in 2015) in untreated plants. The silicon contents of the leaves from the silicon alone treatment were 26.8 μg mg-1 (in 2014) and 22.2 μg mg-1 (in 2015) compared with 19.7 μg mg-1 (in 2014) and 21.4 μg mg-1 (in 2015) from the untreated. The silicon nutrient root application contributed to improved plant resilience against P. aphanis and T. urticae. Silicon could play an important role in broad spectrum control of pests and diseases in commercial strawberry production.