Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature (Twater), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m−2 day−1 and aquatic respiration (RAq) from 0 to 6.13 g C m−2 day−1. Nonlinear interactions between water level, Twater, and GAPP and RAq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.

Til dokument

Sammendrag

Plant diseases may survive and be spread by infected seeds. In this study we monitored the longevity of 14 seed-borne pathogens in 9 crop species commonly grown in the Nordic countries, in addition to a sample of sclerotia of Sclerotinia sclerotiorum. The data from the first 30 years of a 100-year seed storage experiment located in a natural −3.5 °C environment (permafrost) in Svalbard, Norway, are presented. To date, the pathogens, tested by traditional seed health testing methods (freezing blotter, agar plates, growing on tests), have survived. Linear regression analyses showed that the seed infection percentages of Drechslera dictyoides in meadow fescue, Drechslera phlei in timothy, and Septoria nodorum in wheat were significantly reduced compared to the percentages at the start of the experiment (from 63% to 34%, from 70% to 65%, and from 15% to 1%, respectively), and that Phoma betae in beet had increased significantly (from 43% to 56%). No trends in the infection percentage were observed over the years in Drechslera spp. in barley (fluctuating between 30% and 64%) or in Alternaria brassicicola in cabbage (fluctuating between 82% and 99%), nor in pathogens with low seed infection percentages at the start of the experiment. A major part of the stored sclerotia was viable after 30 years. To avoid the spread of seed-borne diseases, it is recommended that gene banks implement routines that avoid the use of infected seeds.

Til dokument

Sammendrag

A new stubby-root nematode belonging to the Trichodorus sparsus complex was found in association with serious damage to Hill’s Yew hedges (Taxus x media ´Hillii´) in Oslo in 2017, characterised by chlorosis, wilting and loss of needles. T. hellalae n. sp. is about 800 μm long with medium-sized onchiostyle (55 μm, average), characterized in male by two ventromedian cervical papillae located beyond the onchiostyle region and with the secretory excretory pore (SE-pore) in between, in most type specimens, three ventromedian precloacal supplements with the posteriormost one opposite the anterior end of spicule manubrium and spicules 40 μm long (average) with widened manubrium, gradually tapered to a narrower blade without ornamentation of striae or bristles, but showing a minor indentation at level of posterior border of capsule of suspensor muscles. Gubernaculum with thickened keel-like posterior end and a thickened refractive anterior border. Females are characterised by a short pear-shaped vagina, less than 1/3rd of corresponding body width and very small rounded triangular vaginal sclerotized pieces in longitudinal optical section and vulva pore-like in ventral view; on each body side one sublateral body pore at about 3.5 body width anterior to vulva and one postadvulvar body pore. According to D2-D3 analyses, the Trichodorus hellalae n. sp. sequences are embedded in a maximally supported clade with several T. variabilis lineages. However, morphological and molecular species delimitation both support Trichodorus hellalae n. sp. as being a new species. Therefore, T. variabilis now appears to in fact consists of several cryptic species.

Til dokument

Sammendrag

The Norwegian newly bred pear cultivar, ‘Celina/QTee®’, which was launched in 2010, has been released from the Norwegian breeding program. It derived from the combination ‘Colourée de Juillet’ × ‘Williams’. In Norway the flowering is medium to late in May and it ripens in the beginning of September. It has large attractive fruits with red blush and good fruit quality, storability and shelf life. Significant areas of ‘Celina’ cultivars are planted in other countries, mainly Europe. Generally, unfavourable environmental conditions for pear pollination during the Nordic spring can have a very negative effect on the yields in Norwegian pear orchards. Therefore, it is of considerable importance to interplant multiple suitable pollinizer genotypes together with the main cultivar. In order to find the right pollinizers besides following biology of fertilization, pollinizing efficacy using microsatellites were studied at NIBIO Ullensvang, western Norway. In this study, during 2017, seeds from fruits of the pear cultivar ‘Celina’ were extracted. The fruits were randomly harvested from five different orchards located in Ullensvang including NIBIO. Alongside the seeds, leaves were taken from the mother cultivar (‘Celina’) and five pear pollinizer cultivars presented in the orchards (‘Fritjof’, ‘Kristina’, ‘Clara Frijs’, ‘Herzogine Elsa’ and ‘Anna’). Using 11 microsatellite markers, a genetic characterization was conducted on both the seeds and the leaves. The obtained SSR profiles were used for gene assignment analyses. The results of the genetic analyses indicate a very heterogeneous situation regarding pollination. In conclusion, ‘Fritjof’, ‘Kristina’, ‘Clara Frijs’, ‘Herzogine Elsa’ and ‘Anna’ pears had different pollen contributions as pollinizers to ‘Celina’ depending on the investigated orchard. Only one cultivar (‘Herzogine Else’) could be singled out as a major pollen contributor in more than two orchards. Genetic analyses will be repeated in the same orchards, during an additional season, after which more conclusive results will be available.

Til dokument

Sammendrag

We sow or plant vascular plant species on a large scale in revegetation and restoration projects in Norway today. Some of the species used are already found in Norway, but many of the species, subspecies or populations used though native are not local, that is, they are regionally alien. A regionally alien species is a species that is native to Norway (has been in Norway since 1800) somewhere in the country, but which has been spread by humans to places in Norway where they do not occur. In theory, and according to the Biodiversity Act, it is desirable to use local seeds or plants to preserve local biodiversity. The aim of this report is to define guidelines that helps prevent the planting of vascular plant species with a high potential for negative effects on local biodiversity. It is assumed that the native or local populations are better adapted to local environmental conditions than populations from other areas or regions, and the risk of harmful genetic changes is therefore considered small when using local plant and seed sources. Arriving at a common definition for the area within which plants are “local” is difficult, though; vascular plant species are numerous (3317 species in mainland Norway, of which more than half are alien species introduced after 1800, Artdatabanken 2015), have different growth forms, different environmental requirements, and different reproductive and dispersal ecology. Even closely related vascular plant species can differ in such characteristics and hence in the extent of the "place" or “area”. The dispersal ecology of a plant species is of great importance for whether the species has genetically distinct populations within its range or not. Different strategies (wind pollination vs. insect pollination, vegetative propagation vs. seed dispersal, large seeds vs. small seeds) have an impact on the degree of gene flow between populations and thus also how locally adapted the species is in different areas. Whether the species has primarily vegetative reproduction or whether it spreads mainly by means of seeds, and whether the seed dispersal takes place ballistically, with wind or water, or by zookori (attached to animals or eaten by animals) determines how far the species can spread and how large gene flow there is between different populations. Whether the species is pollinated by wind or by the help of insects also affects the degree of gene flow differently. In Norway, there is great variation in many biophysical and ecological conditions (climate, topography, hydrology, and geology) over relatively short distances. This means that species that grow only a few meters apart can grow under different environmental conditions. This large variation in environmental conditions - on different spatial scales - can give rise to local genetic adaptation. However, plants have been moved around the landscape for several hundred years by our livestock (as seeds in fur and hooves, and in faeces) from lowland pasture to mountain pasture and along traffic arteries across the country due to the extensive transport of animals and people. Over time, this has led to expanded geographical distribution for several species and increased gene flow between populations over relatively large distances. .............

Til dokument

Sammendrag

In the last decade, several major dwarf-shrub dieback events have occurred in northern European coastal heathlands. These dieback events occur after extended periods with sub-zero temperatures under snow-free conditions and clear skies, suggesting that coastal heathlands have low resistance to winter drought. As climate projections forecast increased drought frequency, intensity, and duration, coastal heathlands are likely to experience more such diebacks in the future. There are, however, few empirical studies of drought impacts and responses on plant communities in humid oceanic ecosystems. We established a drought experiment with two distinct levels of intensified drought to identify responses and thresholds of drought resistance in coastal heathland vegetation. We repeated the experiment in two regions, separated by five degrees latitude, to represent different bioclimatic conditions within the coastal heathlands' wide latitudinal range in Europe. As coastal heathlands are semi-natural habitats managed by prescribed fire, and we repeated the experiment across three post-fire successional phases within each region. Plant community structure, annual primary production, and primary and secondary growth of the dominant dwarf-shrub Calluna vulgaris varied between climate regions. To our surprise, these wide-ranging vegetation- and plant-level response variables were largely unaffected by the drought treatments. Consequently, our results suggest that northern, coastal heathland vegetation is relatively resistant to substantial intensification in drought. This experiment represents the world's wettest (2200 mm year−1) and northernmost (65°8'N) drought experiment to date, thus filling important knowledge gaps on ecological drought responses in high-precipitation and high-latitude ecosystems across multiple phases of plant community succession.

Til dokument

Sammendrag

Competition is ubiquitous in plant communities with various effects on plant fitness and community structure. A long-standing debate about different approaches to explain competition is the controversy between David Tilman and Philip Grime. Grime stated that the importance of competition relative to the impact of the environment increases along a productivity gradient, while Tilman argued that the intensity of competition is independent of productivity. To revisit this controversy, we assumed that the effects of plant–plant interactions are additive and applied the new competition indices by Díaz-Sierra et al. (2017) in a field experiment along a productivity gradient in S-Germany, using the rare arable plant Arnoseris minima as a study species. The ‘target technique' was applied, to separate the effects of root and shoot competition. The study plants were exposed to five competition treatments with three replicates in 18 sites, respectively. We investigated the expectation that root competition is more intense in unproductive sites than shoot competition. Additionally, we predicted survival to be less affected by competition than growth-related plant parameters. Using the biomass of individuals without competition as a proxy for site productivity there was a positive relationship with competition importance but no relationship with competition intensity when plants experienced full competition. Survival of the target plants was unaffected by competition. Root competition was the main mechanism determining the performance of the target plants, whereas the effect of shoot competition was relatively low albeit increasing with productivity. We conclude that when considering plant–plant interactions additive both Grime's and Tilman's theories can be supported.

Til dokument

Sammendrag

Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.

Til dokument

Sammendrag

As the demand for proteins increases with growing populations, farmed seaweed is a potential option for use directly as an ingredient for food, feed, or other applications, as it does not require agricultural areas. In this study, a life cycle assessment was utilised to calculate the environmental performance and evaluate possible improvements of the entire value chain from production of sugar kelp seedings to extracted protein. The impacts of both technical- and biological factors on the environmental outcomes were examined, and sensitivity and uncertainty analyses were conducted to analyse the impact of the uncertainty of the input variables on the variance of the environmental impact results of seaweed protein production. The current production of seaweed protein was found to have a global warming potential (GWP) that is four times higher than that of soy protein from Brazil. Further, of the 23 scenarios modelled, two resulted in lower GWPs and energy consumption per kg of seaweed protein relative to soy protein. These results present possibilities for improving the environmental impact of seaweed protein production. The most important variables for producing seaweed protein with low environmental impact are the source of drying energy for seaweed, followed by a high protein content in the dry matter, and a high dry matter in the harvested seaweed. In the two best scenarios modelled in this study, the dry matter content was 20% and the protein content 19.2% and 24.3% in dry matter. This resulted in a lower environmental impact for seaweed protein production than that of soy protein from Brazil. These scenarios should be the basis for a more environmental protein production in the future.

Til dokument

Sammendrag

Aim Many thematic land cover maps, such as maps of vegetation types, are based on field inventories. Studies show inconsistencies among field workers in such maps, explained by inter-observer variation in classification and/or spatial delineation of polygons. In this study, we have tested a new method to assess the accuracy of these two components independently. Location Four study sites dominated by different ecosystems in southeast Norway. Methods We have used a vegetation-based land cover classification system adapted to a map scale of 1:5,000. First, a consensus map, a map that can be considered an approximation of a flawless map, was established. Secondly, the consensus map was adapted to test the accuracy of classification and polygon delineation independently. We used 10 field workers to generate a consensus map, and 14 new field workers (in pairs) to test the accuracy (n = 7). Results The results show that the accuracy of polygon delineation is lower than that of land cover classification. This is in contrast with previous studies, but previous research designs have not enabled a separation of the two accuracy components. Conclusion We recommend strengthening the training and harmonization of field workers in general, and increasing the emphasis on polygon delineation.