Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2017
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Pierrick Francois Denis Stévant Celine Rebours Annelise Sabine ChapmanSammendrag
The use of cultivated seaweeds as a feedstock for multiple industrial applications has gained increasing interest in the Western World over the past decades. Norway has an extensive coastline and a well-established aquaculture sector offering suitable preconditions for developing large-scale cultivation of seaweed biomass both in monoculture and in Integrated Multi-Trophic Aquaculture (IMTA) systems. Recent efforts from research, industry and public authorities have been committed to develop a Norwegian bio-economy based on cultivated seaweed, focusing on cultivation and processing of the biomass. This review reports on the status of seaweed aquaculture in Norway, supported by production data collected since the delivery of the first commercial cultivation permits at sea in 2014. Although novel product developments are currently limited, future industrial perspectives based on cultivated biomass are being discussed. Upscaling from experimental cultivation schemes to commercial production requires a thorough assessment of the risks and benefits associated with seaweed aquaculture, as well as the development of a regulative framework adapted to this industry. Issues associated with upscaling the macroalgal production that needs to be addressed includes (i) genetic interactions between cultivated and wild crops, (ii) impacts of seaweed cultivation on surrounding ecosystems, (iii) epiphytes and diseases, (iv) area utilization and (v) threats from climate change. Addressing these issues and adapting production practices will ensure the environmental and economic sustainability of an emerging industry based on cultivated seaweed biomass in Norway.
Forfattere
Xiaojie Liu Kenny Bogaert Aschwin H. Engelen Frederik Leliaert Michael Roleda Olivier De ClerckSammendrag
Knowledge of life cycle progression and reproduction of seaweeds transcends pure academic interest. Successful and sustainable seaweed exploitation and domestication will indeed require excellent control of the factors controlling growth and reproduction. The relative dominance of the ploidy-phases and their respective morphologies, however, display tremendous diversity. Consequently, the ecological and endogenous factors controlling life cycles are likely to be equally varied. A vast number of research papers addressing theoretical, ecological and physiological aspects of reproduction have been published over the years. Here, we review the current knowledge on reproductive strategies, trade-offs of reproductive effort in natural populations, and the environmental and endogenous factors controlling reproduction. Given that the majority of ecophysiological studies predate the “-omics” era, we examine the extent to which this knowledge of reproduction has been, or can be, applied to further our knowledge of life cycle control in seaweeds.
Sammendrag
Seed biology is important for emergence in the field and for future weed infestations. This chapter focuses on seed biology, germination, dormancy and efforts in predicting weed emergence from seeds from a European perspective. It presents a brief overview of population dynamics in time and space, the factors influencing the dynamics and how population dynamics can be modelled. Emergence from the seed-bank starts with germination, pre-emergence growth and finally emergence. In addition to seeds, vegetatively propagated material is briefly mentioned. Dormancy influences under what conditions that germination can occur and regulates timing of germination. Population dynamics are important for understanding the whole system and are often based on the life-cycle of weeds: seed-bank, seedlings, adult plants, seed production and dispersal. Challenges in modelling emergence and population dynamics are large, due to differences between and within populations of species, variability in species response and there being many weed species in the same field with contrasting characteristics.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Fields experiments were conducted during two growing seasons (2010–2011 and 2012–2013) at three seeding dates to identify stink bug (Hemiptera: Pentatomidae) species and to determine their seasonal population density fluctuation and damage caused to three common bean (Phaseolus vulgaris L.) cultivars “Ica Pijao,” “Cubacueto 25–9,” and “Chévere.” Stink bug species observed were Nezara viridula (L.), Piezodorus guildinii (Westwood), Chinavia rolstoni (Rolston), Chinavia marginatum (Palisot de Beauvois), and Euschistus sp. The most prevalent species was N. viridula in both seasons. The largest number of stink bugs was found in beans seeded at the first (mid September) and third (beginning of January) seeding dates. Population peaked at BBCH 75 with 1.75, 0.43, and 1.25 stink bugs/10 plants in 2010–2011 and with 2.67, 0.45, and 1.3 stink bugs/10 plants in 2012–2013 in the fields seeded the first, second, and third seeding dates, respectively. The lowest numbers of stink bugs were found in beans seeded at the second (mid November) seeding date. A significant negative correlation between relative humidity and number of stink bugs was found in 2010–2011, and a similar tendency was observed in 2012–2013. The highest seed and pod damage levels occurred in cv. “Chévere” and the lowest in cv. “ICA Pijao” during both seasons. Results suggest that cv. “ICA Pijao” and the second (mid November) seeding date is the best choice to reduce stink bug damage.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ranjana Pathak A Sundaram Lance Cadle-Davidson Knut Asbjørn Solhaug Arne Stensvand Hans Ragnard Gislerød Aruppillai SuthaparanSammendrag
Det er ikke registrert sammendrag