Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Sammendrag
Det er ikke registrert sammendrag
Leder – Editorial: Artificial intelligence and forestry
Felipe Bravo, Sheng-I Yang, Irene Ruano, ...
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Foredrag – Effect of cover crops on nitrate N in soil after the growing season
Randi Berland Frøseth
Forfattere
Randi Berland FrøsethSammendrag
Det er ikke registrert sammendrag
Forfattere
Darius KviklysSammendrag
Det er ikke registrert sammendrag
Forfattere
Till SeehusenSammendrag
Det er ikke registrert sammendrag
Forfattere
Theresa Weigl Jorunn Børve Emily Follett Ingunn Øvsthus Carl Gunnar Fossdal Hanne Larsen Siv Fagertun RembergSammendrag
https://ehc.usamv.ro/wp-content/uploads/2024/05/S10-Book-of-Abstracts.pdf The mid-early ripening cultivar, 'Summerred‘, is popular among consumers and widely grown in Norway. However, 'Summerred‘ fruit is prone to rapid softening and development of senescence-related disorders, especially senescent breakdown. Calcium can have a significant role in maintaining firmness and delaying senescence of fruits. In a two-year study, foliar application of calcium chloride (CaCl2) was conducted six times, with varying weather conditions between the growing seasons. Fruit was harvested at optimal commercial maturity and stored at 4 °C for either six or nine weeks, followed by simulated shelf-life conditions at 20 °C. Ethylene levels were monitored during storage to detect ripening discrepancies. At harvest, CaCl2-treated fruit exhibited significantly lower ethylene production compared to untreated fruit, although no differences were observed during the end of the storage period. Senescent breakdown showed significant variability between the two seasons, with an incidence of up to 15 % in the first season and nearly no incidence in the second season. Senescent breakdown increased with storage length but was not affected by foliar CaCl2 application. Real-time PCR analysis of fruit flesh samples revealed increased expression of polygalacturonase and β-galactosidases genes after storage, indicating their involvement in apple softening. Notably, there were no differences in gene expression between CaCl2-treated and untreated fruit after storage. Expression patterns of genes involved in ethylene biosynthesis at harvest were different between the two seasons. Higher expression was observed in the year when more disorder development occurred, indicating advanced maturity at harvest. There were no significant differences in Streif index between the two years.
Forfattere
Martha Irene Grøseth Linda Karlsson Håvard Steinshamn Marianne Johansen Alemayehu Kidane Egil PrestløkkenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Csilla Farkas Moritz Shore Ágota Horel Gokhan Cüceloglu Levente Czelnai Dorota Mirosław-Świątek Maria Eliza Turek Natalja Čerkasova Brigitta Szabó Antonín Zajiček Attila Nemes Sinja Weiland Petr Fučík Annelie Holzkaemper Rasa Idzelyté Stepan MarvalSammendrag
Within the EU Horizon project OPTAIN (OPtimal strategies to reTAIN and re-use water and nutrients in small agricultural catchments across different soil-climatic regions in Europe, optain.eu) project, the effects of Natural/Small Water Retention Measures (NSWRMs) on water regime, soil erosion and nutrient transport are evaluated at both, catchment- and field-scales for present and future climate conditions. Our goal is to perform an integrated, model-based assessment of the effectiveness of NSWRMs at field scale and cross-validated these results from those obtained from the catchment-scale modelling. The field-scale assessment is based on the adaptation of the SWAP mathematical model to seven pilot sites across three European biogeographical regions and on combined NSWRM – projected climate scenario analyses. The scenarios are designed to evaluate the efficiency and potential of different natural/small water retention measures in improving soil water retention and reducing flash floods and the loss of soil and nutrients under changing climate conditions. We present the harmonized SWAP modelling workflow and the combined scenario analyses, including the implementation of various in-field measures in the SWAP model. Examples of model calibration, validation and scenario results for selected pilot sites will be given.