Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Citizen science is sometimes described as "public participation in scientific research," or participatory monitoring. Such initiatives help to bring research into, for example, the classroom and engage pupils in well-structured observations of nature in their vicinity. The learning and practising of observation may increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using their own senses stimulate faster learning and cognition. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to all the accumulated data. The schools and pupils become part of a larger citizen effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system through the EDU–ARCTIC web-portal or the accompanying mobile app. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. There are also reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system also includes biological field observations of phenological phases of plants: birch, black adler, lilac, rowan, bilberry, rosebay willwherb and denadelion, in all 26 parameters. The occurrence of the first individual of five species of insects: bumblebee, mosquito, ant and 2 butterflies: common brimstone and European peacook, and the registration of the first appearance of the bird species: arctic tern, common cuckoo, white wagtail and crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and Polarpedia (the project’s own online encyclopedia) entries are developed to strengthen the monitoring system. The EDU-ARCTIC monitoring system gathered more than 2000 reports from schools, with an average monthly number of more than 80 observations. They are freely available via the web-portal, but password access is needed in order to enter registrations and data.
Forfattere
Roger HoltenSammendrag
Det er ikke registrert sammendrag
Forfattere
Manuel Jonas Steinbauer John Arvid Grytnes Gerald Jurasinski Aino Kulonen Jonathan Lenoir Harald Pauli Christian Rixen Manuela Winkler Manfred Bardy-Durchhalter Elena Barni Anne D. Bjorkman Frank T. Breiner Sarah Burg Patryk Czortek Melissa A. Dawes Anna Delimat Stefan Dullinger Brigitta Erschbamer Vivian Astrup Felde Olatz Fernández-Arberas Kjetil Farsund Fossheim Daniel Gómez-García D. Georges Erlend T. Grindrud Sylvia Haider Siri Vatsø Haugum Hanne Henriksen Maria J. Herreros Bogdan Jaroszewicz Francesca Orinda Holl Jaroszynska R. Kanka Jutta Kapfer Kari Klanderud Ingolf Kühn Andrea Lamprecht Magali Matteodo Umberto Morra di Cella Signe Normand Arvid Odland Siri Lie Olsen Sara Palacio Martina Petey Veronika Piscová Blazena Sedlakova Klaus Steinbauer Veronika Stöckli Jens-Christian Svenning Guido Teppa Jean-Paul Theurillat Pascal Vittoz Sarah J. Woodin Niklaus E. Zimmermann Sonja WipfSammendrag
Det er ikke registrert sammendrag
Sammendrag
The predicted and ongoing climate warming is expected to affect many aspects of plant development. We analysed data from a 31-year series of observations (1985–2016) on spring phenology and flowering and fruiting performance of three plum cultivars in an experimental orchard at Ås in southeast Norway (59° 40′N; 10° 50′E). Regression analyses revealed a trend of increasing March and April temperature during the study period that was highly significantly (P < 0.001) negatively correlated with the date of full bloom (FB). On average for all cultivars, blooming was advanced by 10 days over the study period. August and September temperature, which also increased significantly during the study period, was closely positively correlated with the amount of flowering in the subsequent spring and also interacted with early spring temperature in advancing blooming time. Investigation of the time of floral initiation in two of the studied plum cultivars revealed that the transition to reproductive development took place in early to mid-August. This finding strongly suggests that the close positive correlation between August-September temperature and the amount of flowering in plum observed in this and other studies, is causally linked to a specific physiological effect of elevated temperature on the flower bud formation process. Increasing March and April temperatures during the last 30 years has advanced blooming and spring phenology in plum and the resulting extension of the growing season has led to increasing fruit size at harvest. We conclude that so far, the ongoing climate warming appears to have been positive for plum production in the cool Nordic environment. However, an increasing risk of frost associated with earlier blooming will represent a potential negative effect of continued warming.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
B. S. Steidinger T. W. Crowther J. Liang M. E. Van Nuland G. D. A. Werner P. B. Reich G. J. Nabuurs S. de-Miguel M. Zhou N. Picard B. Herault X. Zhao C. Zhang D. Routh Meinrad Abegg C. Yves Adou Yao Giorgio Alberti Angelica Almeyda Zambrano Esteban Alvarez-Davila Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernández Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo Aymard Timothy Baker Radomir Bałazy Olaf Bánki Jorcely Barroso Meredith Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Francis Q. Brearley Roel Brienen Eben Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo Cesar Goran Cesljar Robin Chazdon Han Y. H. Chen Douglas Sheil K. G. PeaySammendrag
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Oda Marie Kjørlaug Svennevik Greeley Beck Ester Rus Bjørge Westereng Matthew Higgins Odd Egil Solheim Pål Jahre Nilsen Svein Jarle HornSammendrag
Efficient digestate dewatering is crucial to reduce the volume and transportation cost of solid residues from anaerobic digestion (AD) plants. Large variations in dewatered cake solids have been reported and predictive models are therefore important in design and operation of such plants. However, current predictive models lack validation across several digestion substrates, pre-treatments and full-scale plants. In this study, we showed that thermogravimetric analysis is a reliable prediction model for dewatered cake solids using digestates from 15 commercial full-scale plants. The tested digestates originated from different substrates, with and without the pre-AD thermal hydrolysis process (THP). Moreover, a novel combined physicochemical parameter (C/N•ash) characterizing different digestate blends was identified by multiplying the C/N ratio with ash content of the dried solids. Using samples from 22 full-scale wastewater, food waste and co-waste plants, a linear relationship was found between C/N•ash and predicted cake solids for digestates with and without pre-AD THP. Pre-AD THP improved predicted cake solids by increasing the amount of free water. However, solids characteristics like C/N ratio and ash content had a more profound influence on the predicted cake solids than pre-AD THP and type of dewatering device. Finally, C/N•ash was shown to have a linear relationship to cake solids and reported polymer dose from eight full-scale pre-AD THP plants. In conclusion, we identified the novel parameter C/N•ash which can be used to predict dewatered cake solids regardless of dewatering device and sludge origin.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag