Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2012

Sammendrag

This chapter provides an overview of anatomical and ecological aspects of resin-based defences in pines and contrasts the defence strategy of pines with that of other conifers. The main constituents of conifer resin are mono- and diterpenes in about equal amounts, with smaller amounts of sesquiterpenes. Resin production and storage represent a great cost for the trees, and because resin is both chemically toxic and physically deterring to insects and pathogens it has long been considered an important defence mechanism in conifers. Preformed or constitutive resin structures are present in pines and all other members of the pine family, but are generally absent in non-Pinaceae species. Resin stored under pressure in constitutive ducts flows out when a tree is injured and helps trapping or repelling invading organisms and sealing the wound. Pines have constitutive resin ducts in needles, phloem and xylem. In the phloem and xylem constitutive resin ducts are oriented both radially (within the radial rays) and axially in the form of cortical resin ducts in the outer phloem and constitutive resin ducts in the xylem. Numerous connections between the radial resin ducts and the axial resin ducts in the xylem create a large inter-connected resin reservoir. In addition, so-called traumatic resin ducts can be induced axially in the xylem in response to wounding, insect attack or other biotic and abiotic stresses. Traumatic resin ducts may contribute to so-called acquired or systemic induced resistance that increases tree resistance to future attacks.

Til dokument

Sammendrag

Norway spruce (Picea abies) bark contains specialized phloem parenchyma cells that swell and change their contents upon attack by the bark beetle Ips typographus and its microbial associate, the blue stain fungus Ceratocystis polonica. These cells exhibit bright autofluorescence after treatment with standard aldehyde fixatives, and so have been postulated to contain phenolic compounds. Laser microdissection of spruce bark sections combined with cryogenic NMR spectroscopy demonstrated significantly higher concentrations of the stilbene glucoside astringin in phloem parenchyma cells than in adjacent sieve cells. After infection by C. polonica, the flavonoid (+)-catechin also appeared in phloem parenchyma cells and there was a decrease in astringin content compared to cells from uninfected trees. Analysis of whole-bark extracts confirmed the results obtained from the cell extracts and revealed a significant increase in dimeric stilbene glucosides, both astringin and isorhapontin derivatives (piceasides A to H), in fungus-infected versus uninfected bark that might explain the reduction in stilbene monomers. Phloem parenchyma cells thus appear to be a principal site of phenolic accumulation in spruce bark.

Sammendrag

Aksfusariose er en utbredt og destruktiv sjukdom i korn som kan forårsakes av en rekke ulike sopparter innen slekta Fusarium. I tillegg til å redusere avlingsmengde, kvalitet og frøspiring, kan ulike Fusarium-arter produsere en rekke ulike soppgifter (mykotoksiner) som kan være giftige for mennesker og dyr. Fuktige værforhold i perioden rundt blomstring av kornet ser ut til å øke risikoen for angrep av Fusarium. I tillegg kan dyrkningspraksis påvirke forekomsten av aksfusariose og utvikling av mykotoksiner i kornet.