Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

The Norwegian Committee for Food and Environment (VKM) has performed a preliminary assessment of an application for authorization for the genetically modified maize event DP202216 in the EAA. The scope of the application includes all uses of maize DP202216 and sub-combinations independently of their origin equivalent to the uses of any other maize grain and forage. The assessment was performed in connection with EFSAs (European Food Safety Authorities) public hearing of application EFSA-GMO-NL-2019-159, on request from the Norwegian Food Safety Authority and the Norwegian Environment Agency. The assessment of maize DP202216 is based on information provided by the applicant in the application EFSA-GMO-NL-2019-159, and relevant peer-reviewed scientific literature. Maize DP202216 has the potential to enhanced grain yield, and provides tolerance to glufosinate-ammonium herbicides. Authorisation process for genetically modified organisms Through the EEA Agreement, the EU Directive 2001/18/EC on deliberate release into the environment of genetically modified organisms is implemented in Norwegian law. Norway is therefore affiliated with the GMO authorisation process in the EU. In the EU, both GMOs and derived products are regulated by the Directive and Regulation 1829/2003/EC. The Regulation concerns genetically modified food and feed and is currently not a part of the EEA Agreement. In preparation for a legal implementation of the Regulation in Norwegian law, Norway follows the EU proceedings for GMO applications. When a company seeks approval of a genetically modified organism, the application is submitted to the national competent authority of an EU Member State, which forwards the application to EFSA. EFSA then submits the application for a public hearing across all EEA countries. VKM conducts its own review of the application and sends its comments to EFSA. EFSA then completes their scientific opinion based on information from the applicant, comments from EEA member countries and independent literature. The scientific opinion is then issued to the European Commission. VKM submitted their comments on application EFSA-GMO-NL-2019-159 to EFSA before the deadline January 3, 2020.

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP915635 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Maize DP915635 DP915635 is a genetically modified maize that expresses the insecticidal protein IPD079Ea for control of corn rootworm pests, the enzyme phosphinothricin acetyltransferase (PAT) for tolerance to glufosinate-ammonium herbicides, and the enzyme phosphomannose isomerase (PMI) that was used as a selectable marker during development. The scientific documentation provided in the application for DP915635 maize is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in DP915635 maize to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA scientific Opinion is adequate also for Norwegian conditions. Therefore, a full risk assessment of DP915635 maize was not performed by the VKM GMO Panel. About the assignment: In stage 1, VKM shall assess the health and environmental risks of the genetically modified organism and derived products in connection with the EFSA scientific hearing of GMO applications. VKM shall review the scientific documentation that the applicant has submitted and possibly provide comments to EFSA. VKM must also consider: i) whether there are specific Norwegian conditions that could give other risks in Norway than those mentioned in the application, ii) whether the Norwegian diet presents a different health risk for the Norwegian population should the GMO be approved, compared to the European population, and iii) risks associated with co-existence with conventional and/or ecologic production of plants for GMOs seeking approval for cultivation. Relevant measures to ensure co-existence must also be considered. In stage 2, VKM shall assess whether comments from Norway have been satisfactorily answered by EFSA. In addition, VKM shall assess whether comments from other countries imply need for further follow-up. If EFSAs response to Norwegian comments is not satisfactory, or comments by other countries imply the need for further follow-up, VKM shall in stage 3 perform a risk assessment of these conditions, including conditions specific to Norway.

Til dokument

Sammendrag

The Norwegian Committee for Food and Environment (VKM) has performed a preliminary assessment of an application for authorization for the genetically modified maize event DP202216 in the EAA. The scope of the application includes all uses of maize DP202216 and sub-combinations independently of their origin equivalent to the uses of any other maize grain and forage. The assessment was performed in connection with EFSAs (European Food Safety Authorities) public hearing of application EFSA-GMO-NL-2019-159, on request from the Norwegian Food Safety Authority and the Norwegian Environment Agency. The assessment of maize DP202216 is based on information provided by the applicant in the application EFSA-GMO-NL-2019-159, and relevant peer-reviewed scientific literature. Maize DP202216 has the potential to enhanced grain yield, and provides tolerance to glufosinate-ammonium herbicides. Authorisation process for genetically modified organisms Through the EEA Agreement, the EU Directive 2001/18/EC on deliberate release into the environment of genetically modified organisms is implemented in Norwegian law. Norway is therefore affiliated with the GMO authorisation process in the EU. In the EU, both GMOs and derived products are regulated by the Directive and Regulation 1829/2003/EC. The Regulation concerns genetically modified food and feed and is currently not a part of the EEA Agreement. In preparation for a legal implementation of the Regulation in Norwegian law, Norway follows the EU proceedings for GMO applications. When a company seeks approval of a genetically modified organism, the application is submitted to the national competent authority of an EU Member State, which forwards the application to EFSA. EFSA then submits the application for a public hearing across all EEA countries. VKM conducts its own review of the application and sends its comments to EFSA. EFSA then completes their scientific opinion based on information from the applicant, comments from EEA member countries and independent literature. The scientific opinion is then issued to the European Commission. VKM submitted their comments on application EFSA-GMO-NL-2019-159 to EFSA before the deadline January 3, 2020.

Sammendrag

Faba beans and other cool climate legumes are well suited for cultivation in Vestfold and Østfold in the Norwegian south-east because of their requirement for long growing seasons and are desired due to their high protein content and beneficial biological nitrogen fixation properties. Including such crops in rotations is an advantage due to the subsequent reduction in costs and CO2 emissions from fertilizer production. Additionally, their presence in rotations could be a tool for improving integrated pest management in cereals by reducing disease pressure. A challenge specifically related to the management of faba bean crops is the disease chocolate spot (cs) caused by pathogen species in the genus Botrytis, typically Botrytis fabae Sardiña. and Botrytis cinerea Pers.: Fr. Management of chocolate spot epidemics is limited by the number of fungicides available to commercial growers, and the development of fungicide resistance is a challenge currently being investigated. A randomized factorial split-plot field trial with 3 replicates was set up in at Vollebekk research farm in Ås in the spring of 2023 and separated by early and late varieties. For each section three seed rates, two cultivars and four fungicide treatments were used. The severity of disease was scored, the developmental stages of the crops were recorded, and the resulting yield was dried and weighed. By collecting diseased leaves and making single spore isolates, the pathogens available in the field were sequenced using a NEP2 primer and tested against the active compounds in the currently utilized fungicide Signum®. Causal organisms were B. fabae and B. cinerea, there was no relationship between severity and fungal species, and no noteworthy signs of resistance to fungicide compounds were found. Results showed significant differences in chocolate spot levels between treated and untreated plots in early and late varieties, and the severity was lowest in plots treated with Elatus® Era, a fungicide currently unavailable for use in faba beans. Yield and chocolate spot correlated negatively, and the yield was highest in plots treated after the first symptoms appeared. The difference in yield between this treatment and untreated plots was significant in late varieties. Canopy density measured by sowing rate had no significant effect on disease severity in either early or late varieties, although the correlation was positive in both.

Til dokument

Sammendrag

The feed legislation allows the use of fish protein hydrolysates in feed for the same species in which it came from, since enzymatic hydrolysis degrades the proteins and eliminates potential prions, which have caused disease in mammals, but not in fish. In this trial, we investigated the effects of partially replacing dietary fishmeal (FM) with salmon protein hydrolysate (FPH) on the intestinal gene expression and microbiota. Atlantic salmon post smolts were either fed a control diet containing 30% fishmeal (FM), a 20% FM diet with 9% salmon hydrolysate (FPH-09) or a 10% FM diet with 18% salmon hydrolysate (FPH-18), until doubling of weight. Gene expression analysis by RNA sequencing of pyloric caeca (PC), midgut (MG) and hindgut (HG) revealed a downregulation of immunological genes involved in inflammation in the intestine of FPH-18 fed salmon compared to salmon fed the FM control. The gene expression of paralogous peptide transporters (PepT) was analyzed by real time quantitative PCR in PC, anterior midgut (AMG), posterior midgut (PMG) and HG of salmon fed all the three diets. The PepT1b paralog had highest relative expression levels in PC and AMG, suggesting that PepT1b is most important for peptide uptake in the anterior intestine. PepT1a was also mainly expressed in the PC and AMG, but at lower levels than PepT1b and PepT2b in the AMG. The PepT2b paralog had high levels of expression in AMG, PMG and HG indicating that it contributed significantly to peptide uptake in the posterior part of the gastrointestinal tract. The gut microbiota in the mucosa and digesta of the MG and HG, were dominated by the phyla Cyanobacteria and Proteobacteria, but also Firmicutes were present. The only dietary effect on the microbiota was the higher prevalence of the phyla Spirochaetes in the mucosa of FPH-18 fed salmon compared to the FM fed salmon. In conclusion, replacing FM with salmon hydrolysate reduced the expression of inflammatory markers in the Atlantic salmon intestine suggesting improved health benefits. The reduced inflammation may be related to the reduced FM content, potentially bioactive peptides in the hydrolysate and/or the altered gut microbial composition.

Til dokument

Sammendrag

Potato production in East Africa is seriously impacted by the potato cyst nematode (PCN), Globodera rostochiensis, where it has been recorded in at least three countries. In Kenya, it is widespread in all major potato-growing regions, often at very high densities. Consecutive cropping of potato on the same land and a sub-tropical climate have influenced PCN biology. For example, unusually large cysts have been regularly recovered. We have analysed the biological properties of these ‘giant cysts’. The giant cysts contained more eggs than those recovered from UK fields. Egg size did not differ from UK populations and there was no difference in overall lipid content or lipid profile in J2 from giant cysts, compared to control samples. The nematodes in giant cysts were also genetically indistinguishable from any other G. rostochiensis sampled. When grown under UK glasshouse conditions, the offspring of nematodes from giant cysts were no different in size from those grown from control cysts, indicating that gigantism is not a heritable trait and may simply reflect favourable conditions for PCN under Kenyan farming systems. To date, all the PCN tested from Kenya, including those from giant cysts, are avirulent on potato cultivars containing the H1 resistance gene

Til dokument

Sammendrag

Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%–74% and 39%–58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.

Til dokument

Sammendrag

Potato production faces major challenges from inadequate soil fertility, and nematode infestation, yet synthetic fertilizers and nematicides are costly and harmful to the environment. This study explored the potential of chitin-fortified black soldier fly-composted organic fertilizer (BSFCOF) as a multipurpose organic fertilizer amendment for enhancing potato yield and suppressing potato cyst nematodes (PCN). The BSFCOF was applied at a rate equivalent to 150 kg N ha-1 and fortified with chitin from black soldier fly pupal exuviae at inclusion rates equivalent to 0.5, 1, 2, 3, 4 and 5% chitin. Data were collected on potato growth characteristics, PCN population densities, and soil chemical properties for two growing cycles. Results showed that chitin fortified BSFCOF significantly improved potato growth parameters, chlorophyll concentration, marketable tuber yield and number of marketable tubers. The marketable tuber yield achieved using chitin-fortified BSFCOF was 70 – 362%, and 69 – 238% higher than the values achieved using unfertilized soil during the first and second growing cycles, respectively. Soil amendment with chitin-fortified BSFCOF significantly reduced the number of cysts per 200 g soil-1, number of eggs and J2 per cyst-1, eggs g-1 soil and reproduction rate by 32 – 87%, 9 – 92%, 31– 98% and 31 – 98%, respectively. The PCN suppression increased with chitin inclusion rates. There were significantly higher values for soil pH, ammonium nitrogen, nitrate nitrogen, available phosphorus, calcium, magnesium, potassium, and cation exchange capacity in soil amended with BSFCOF compared to unamended soil. This study demonstrates that BSFCOF fortified with 5% chitin is an effective soil enhancer with multiple benefits, including improved soil fertility, potato performance, and effective management of potato cyst nematodes.