Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Stig A. Borgvang Dorinde Mechtilde Meike Kleinegris Viswanath Kiron Katerina Kousoulaki Maria Barbosa Anabela Raymundo Carlos Unamunzaga Anne Kjersti Uhlen Sander Hazewinkel Hans Torstein Kleivdal Trude Wicklund Kai Kristoffer Lie Nils-Arne Ekerhovd Kristian Fuglseth Dag Hjelle Arne Edvard Rosland Hortemo Hans Petter Kleppen Jørund Hagen Helen Haaland Per Fredriksen Shuichi Satoh Rene Wijffels Kari SkjånesSammendrag
The knowledge- and technology platform developed within the ALGAE TO FUTURE project aims to lay a foundation for an industrial microalgae production in Norway. In the project ALGAE TO FUTURE, funded by the Norwegian Research Council 2017-2021, with a consortium of 20 national and international research and industry partners, research and product development of microalgae biomass have been approached from multiple angles merging multiple research fields. The focus of the research has been bioprocess developments linked to lipids, carbohydrates and proteins, where species selection and cultivation conditions are used to obtain microalgae biomass with specific nutrient composition targeting specific products. We have chosen to target the development of three example products, namely 1) bread using algae biomass with high protein content, 2) beer using algae biomass with high content of starch and starch-degrading enzymes, and 3) fish feed using algae biomass with high PUFA content. These case studies have been chosen in order to demonstrate the use of algal biomass from various algae species with highly different nutrient composition suitable for different products. We have in this project studied the whole process line from small scale microalgae cultivation technology, upscaling cultivation, processing of algae biomass, shelf life, food/ feed product development, food safety and consumers attitudes. Some highlights from the four-year project period will be presented. Results from these activities may contribute towards the use of microalgae as part of the future Norwegian bioeconomy.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Bikal Ghimire Marcia Saraiva Christian B. Andersen Anupam Gogoi Mona Saleh Nicola Zic Pieter van West May Bente BrurbergSammendrag
Oomycetes are spore-forming eukaryotic microbes responsible for infections in animal and plant species worldwide, posing a threat to natural ecosystems, biodiversity and food security. Genomics and transcriptomics approaches, together with host interaction studies, give promising results towards better understanding of the infection mechanisms in oomycetes and their general biology. Significant development and progress in oomycetes genomic studies have been achieved over the past decades but further understanding of molecular processes, gene regulations and infection mechanisms are still needed. The use of molecular tools such as CRISPR/Cas and RNAi helped elucidate some of the molecular processes involved in host invasion and infection both in plant and animal pathogenic oomycetes. These methods provide an opportunity for accurate and detailed functional analysis involving various fields of studies such as genomics, epigenomics, proteomics, and interactomics. Functional gene characterisation is essential for filling the knowledge gaps in dynamic biological processes. However, every method has both advantages and limitations that should be considered before choosing the best method for investigating a particular research question. Here we review transformation systems, gene silencing and gene editing techniques in oomycetes, how they function, in which species and what are their main advantages and disadvantages.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Plant virus eradication is a prerequisite for the use of virus-free propagules for sustainable crop production. In contrast, virus preservation is required for all types of applied and basic research of viruses. Shoot tip cryopreservation can act as a double-edged strategy, facilitating either virus eradication or virus preservation in cryoderived plants. Here, we tested the efficacies of shoot tip cryopreservation for virus eradication and preservation in shallot (Allium cepa var. aggregatum). In vitro stock shallot shoots infected with onion yellow dwarf virus (OYDV) and shallot latent virus were thermotreated for 0, 2, and 4 weeks at a constant temperature of 36℃ before shoot tip cryopreservation. Results showed that viruses were preserved in recovered shoots when thermotherapy was not applied. Although thermotherapy lowered the regrowth levels of cryotreated shoot tips, the efficiency of virus eradication increased from 5% to 54%. Immunolocalization of OYDV and histological observation of cryotreated shoot tips showed the high frequency of virus preservation was due to the viral invasion of cells close to the apical meristem and the high proportion of cells surviving. Four weeks of thermotherapy drastically decreased the distribution of OYDV, as well as the percentage of surviving cells within the shoot tips, thereby promoting virus eradication. Virus-free plants obtained from combining thermotherapy with cryotherapy showed significantly improved vegetative growth and bulb production. The present study reports how thermotherapy can act as a trigger to facilitate either the safe preservation of Allium viruses or the production of virus-free shallot plants.
Forfattere
Min-Rui Wang Wenlu Bi Mukund R. Shukla Li Ren Zhibo Hamborg Dag-Ragnar Blystad Praveen K. Saxena Qiao-Chun WangSammendrag
Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.
Sammendrag
Det er ikke registrert sammendrag