Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Intensification and specialization of farming systems in Europe and elsewhere has resulted in poor crop rotations, with low plant and animal diversity. This has resulted in more uniform landscapes, soil carbon loss and low efficiency in nutrient cycling, particularly in regions dominated by annual crops. Inclusion of ley in crop rotations is expected to increase soil organic carbon (SOC) stocks, nitrogen availability and improve soil physical properties. The effect of ley-arable rotations versus continuous annual cropping on soil quality, soil organic carbon and soil biology was assessed by summarizing and discussing results from publications from long-term experiments in Norway and Sweden. These studies support the hypotheses that the inclusion of leys in crop rotations promotes soil fertility and carbon sequestration in Northern Europe, supplies nutrients to subsequent crops and improves soil physical properties. However, one or two years of ley in rotations may not be enough for maintaining SOC and good soil structure over time. For keeping the relatively high SOC concentrations occurring at many sites in Northern Europe, the proportion of ley in rotation should be at least 50%.

Til dokument

Sammendrag

Productive and stable forage yields are essential for the sustainability of ruminal livestock production. Grassland seed mixtures composed of species of diverse functional groups have previously been demonstrated to increase yield performance and stability compared to monocultures. In this study we conducted field trials with five grass and two legume species either grown in monocultures or a range of mixtures from two-species to seven-species mixtures sown in a simplex design. The species represented different functional groups regarding ability to fixate atmospheric nitrogen (N), rate of establishment and temporal persistence.The experiments were established with the same cultivars of species at five locations in Norway with climatically contrasting environments – from mild humid, mountainous continental to sub-arctic. The experimental plots were harvested for three years at four of the sites and two years at one of the sites, and they were fertilised according to normal practise in intensive silage grass production in the respective regions (regular N). At three of the sites, a treatment with low mineral N supply rate was also included.We found that crops sown as mixtures returned higher yields and contained less weeds than the average of monoculture crops, and these effects were consistent over all sites and study years. The grass-legume mixtures managed at low N supply rate performed equally well or better than monocultures or grass-only mixtures managed at regular N supply. We found no effects of the functional groups categorised as temporal persistence or rate of establishment on the yield performance, and there were no apparent benefits of increasing the number of species beyond the species P. pratense, F. pratensis and T. pratense over the three production years the experiments lasted.The results suggest that by using grass-clover mixtures, farmers can reduce N fertiliser rates, without compromising productivity of temporary grassland under northern conditions over the first three years of production.

Sammendrag

Før i tiden var det vanlig med blomsterrike slåtteenger over store deler av landet, og de fleste gårdsbruk hadde slåtteenger. Over 80 % av disse engene har nå forsvunnet og etablering av blomstereng er derfor et flott initiativ for å øke mangfoldet av insekter og planter. I 2023 fikk NIBIO forespørsel om utarbeiding av en etablerings og skjøtselsplan for et område ved Nordseter på Nordstrand. Feltarbeid ble gjennomført 30.mai av Elin Blütecher. Denne etablerings- og skjøtselsplanen gir restaurerings- og skjøtselsplanråd for blomstereng på den utvalgte lokaliteten.

Til dokument

Sammendrag

Currently global seaweed industries are facing issue with availability of raw material for processing of carrageenan due to low growth of current planting material. Use of biostimulants in seaweed cultivation is recently paid more attention due to their proven biostimulatory effect, of which, Ascophyllum marine plant extract powder (AMPEP) is a well proven biostimulant to improve the growth and quality of Kappaphycus alvarezii biomass. Hence, 500 kg of AMPEP was purchased and studied its impact on the commercial farming of K. alvarezii from April 2018 to January 2022 in India. Vegetative propagule of K. alvarezii were dipped in an AMPEP with concentration range of: 0.025, 0.05, 0.10, 0.15, 0.20 and 0.25 % for 30, 60, 90 and 120 min. Before out-planting on rafts in shallow coastal water and found that K. alvarezii responded well to a 0.1 % solution with dipping time of 60 min. The percentage of average daily growth rate (ADGR%) of AMPEP-treated plant in a 45 d grow out period was 3.50 ± 0.50 % vs a control of 1.75 ± 0.25 % for the summer and pre-monsoon months (p < 0.05) but no statistically significant differences between the treated and control plants were found during the rainy and winter seasons. Treated plants were found with low incidence of epiphytes, and disease as compared to control plants. The general appearance and health of treated Kappaphycus was good with significant differences in the yield and quality of semi-refined carrageenan (SRC) and dry weed quality (p < 0.05). The cost of AMPEP for producing of additional 1 kg of dry Kappaphycus was 0.066USD. Results of the present study is very encouraging and AMPEP can be used for the production of K. alvarezii biomass for industrial and biorefinery processing as it has been witnessed that there was 16.66 % increase in biomass production in 2021in India.

Til dokument

Sammendrag

Soil management is important for sustainable agriculture, playing a vital role in food production and maintaining ecological functions in the agroecosystem. Effective soil management depends on highly accurate soil property estimation. Machine learning (ML) is an effective tool for data mining, selection of key soil properties, modeling the non-linear relationship between different soil properties. Through coupling with spectral imaging, ML algorithms have been extensively used to estimate physical, chemical, and biological properties quickly and accurately for more effective soil management. Most of the soil properties are estimated by either near infrared (NIR), Vis-NIR, or mid-infrared (MIR) in combination with different ML algorithms. Spectroscopy is widely used in estimation of chemical properties of soil samples. Spectral imaging from both UAV and satellite platforms should be taken to improve the spatial resolution of different soil properties. Spectral image super-resolution should be taken to generate spectral images in high spatial, spectral, and temporal resolutions; more advanced algorithms, especially deep learning (DL) should be taken for soil properties’ estimation based on the generated ‘super’ images. Using hyperspectral modeling, soil water content, soil organic matter, total N, total K, total P, clay and sand were found to be successfully predicted. Generally, MIR produced better predictions than Vis-NIR, but Vis-NIR outperformed MIR for a number of properties. An advantage of Vis-NIR is instrument portability although a new range of MIR portable devices is becoming available. In-field predictions for water, total organic C, extractable phosphorus, and total N appear similar to laboratory methods, but there are issues regarding, for example, sample heterogeneity, moisture content, and surface roughness. More precise and detailed soil property estimation will facilitate future soil management.

Til dokument

Sammendrag

Regeneration of polyploidy from young thallus segments of Kappaphycus alvarezii was optimized for genetic improvement. Kappaphycus thallus segment cultured on sterile sea water supplemented with various combinations of Indole acetic acid, Kinetin and Acardian Marine Plant Extract Powder revealed differential response on callus proliferation and development of new thallus. Presence of Acardian Marine Plant Extract Powder (3 mg/l) in combination with Indole acetic acid and Kinetin (0.01 mg/l each) had induced the longest emerging thallus. Exposure of thallus to colchicine at 0.01% with above combination was optimal to induce high frequency regeneration of polyploidy mostly from the meristematic cells. Anatomical study of colchicine induced polyploidy revealed larger cortical cells with irregular thickening of epidermal layer. Phase contrast and Scanning Electron Microscopic study revealed increase in cell size in cortical region with significantly larger number of spherical shaped carrageenan globules in colchicine induced polyploidy than normal thallus. Single cells isolated using enzymatic treatments from colchicine induced polyploidy, shown chromosome number with a ploidy status of 4n ≈ 40. Whereas in normal thallus, only half the number of chromosomes (2n ≈ 20) were observed. Polyploidy were successfully acclimatized gradually using raft method for further evaluation. This is the first report reveals the induction and regeneration of polyploidy in Kappaphycus. The possible application of this finding in genetic improvement of Kappaphycus is discussed.