Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Intensification and specialization of farming systems in Europe and elsewhere has resulted in poor crop rotations, with low plant and animal diversity. This has resulted in more uniform landscapes, soil carbon loss and low efficiency in nutrient cycling, particularly in regions dominated by annual crops. Inclusion of ley in crop rotations is expected to increase soil organic carbon (SOC) stocks, nitrogen availability and improve soil physical properties. The effect of ley-arable rotations versus continuous annual cropping on soil quality, soil organic carbon and soil biology was assessed by summarizing and discussing results from publications from long-term experiments in Norway and Sweden. These studies support the hypotheses that the inclusion of leys in crop rotations promotes soil fertility and carbon sequestration in Northern Europe, supplies nutrients to subsequent crops and improves soil physical properties. However, one or two years of ley in rotations may not be enough for maintaining SOC and good soil structure over time. For keeping the relatively high SOC concentrations occurring at many sites in Northern Europe, the proportion of ley in rotation should be at least 50%.
Forfattere
Emilie SandellSammendrag
Det er ikke registrert sammendrag
Forfattere
Narta ElshaniSammendrag
Sheep production systems in Norway present complexity in the same way as other systems partaking in the climate challenges. Sustainability of these systems cannot be defined through single-impact indicators; hence a broader range of sustainability dimensions and trade-offs must be assessed. The present research uses the Sustainability Assessment and Monitoring RouTine (SMART): a multi-criteria sustainability assessment based on the Sustainability Assessment of Food and Agriculture Systems (SAFA) Guidelines which gathers data on the farms’ performance through 327 indicators across 4 dimensions. Eight sheep farms in Norway were selected for assessment: four low-land coastal farms, and four inland mountain farms. Management practices which support sustainability were identified in all farms: high animal welfare, high number of days of access to pasture for the livestock, no/low use of synthetic chemicals, good water management, and high quality of life for farmers. Management practices which hinder sustainability and key areas for improvement were also identified: increased onfarm energy production, decreased use of externally sourced concentrate feed, and increased farmers’ knowledge about externally sourced inputs. Some differences between the coastal and inland farms were also identified which were related to number of days of access to pasture for livestock, water consumption, participation for farmers in trainings and additional education, and political involvement. Using the SMART-Farm tool aided the process of identifying practices and systematically evaluating them through a global sustainability perspective. Aggregated results from the SMART-Farm assessment indicated a high degree of goal achievement across dimensions. The farms scored on average above 80% on the Environmental Integrity and the Social Well-Being, and lower on the Economic Resilience and the Good Governance dimensions (76% & 71% respectively). To evaluate these results, a qualitative expert elicitation method was employed; this provided insight into shortcomings which were a result of the context-generic approach that the tool has and lack of inclusion of stakeholder participation in indicator selection and aggregation process. These shortcomings are important to consider when interpreting the results of numeral integration assessments which are used for decision-making. However, evaluating these scores was also a valuable outcome in itself since it uncovered knowledge gaps about the topic of sustainability of sheep farming in Norway.
Sammendrag
Productive and stable forage yields are essential for the sustainability of ruminal livestock production. Grassland seed mixtures composed of species of diverse functional groups have previously been demonstrated to increase yield performance and stability compared to monocultures. In this study we conducted field trials with five grass and two legume species either grown in monocultures or a range of mixtures from two-species to seven-species mixtures sown in a simplex design. The species represented different functional groups regarding ability to fixate atmospheric nitrogen (N), rate of establishment and temporal persistence.The experiments were established with the same cultivars of species at five locations in Norway with climatically contrasting environments – from mild humid, mountainous continental to sub-arctic. The experimental plots were harvested for three years at four of the sites and two years at one of the sites, and they were fertilised according to normal practise in intensive silage grass production in the respective regions (regular N). At three of the sites, a treatment with low mineral N supply rate was also included.We found that crops sown as mixtures returned higher yields and contained less weeds than the average of monoculture crops, and these effects were consistent over all sites and study years. The grass-legume mixtures managed at low N supply rate performed equally well or better than monocultures or grass-only mixtures managed at regular N supply. We found no effects of the functional groups categorised as temporal persistence or rate of establishment on the yield performance, and there were no apparent benefits of increasing the number of species beyond the species P. pratense, F. pratensis and T. pratense over the three production years the experiments lasted.The results suggest that by using grass-clover mixtures, farmers can reduce N fertiliser rates, without compromising productivity of temporary grassland under northern conditions over the first three years of production.
Sammendrag
Det er ikke registrert sammendrag