Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2017
Forfattere
Stefano Puliti Svein Solberg Erik Næsset Terje Gobakken Eliakimu Zahabu Ernest William Mauya Rogers Ernest MalimbwiSammendrag
The use of Interferometric Synthetic Aperture Radar (InSAR) data has great potential for monitoring large scale forest above ground biomass (AGB) in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS); i.e., as an alternative to using airborne laser scanning (ALS). The results revealed that the AGB model using InSAR height had a predictive accuracy of RMSE = 24.1 t·ha−1 ; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Knowing the historical variation in fire regimes is instrumental in managing forests today and in predicting what may happen in the future. By cross-dating 745 fire scars in 378 samples of remnant Scots pines, we delineated 254 individual forest fires during the past 700 years in a 74-km2 section of Trillemarka-Rollagsfjell Nature Reserve in south-central Norway. Fire sizes, numbers, burn rates, and frequencies were compared with historical climate proxies, vegetation maps, and written sources. The results revealed patterns consistent with a predominantly climate-driven fire regime up to 1625, followed by periods of strong anthropogenic influence that increased fire frequency during 1600–1700s and diminished fires during 1800–1900s. This was documented by an abrupt increase in number of small fires from the early 1600s that markedly shortened fire intervals from a median of 73 to 37 yr. This shift in fire frequency coincided with a sudden appearance of early-season fires from 1625 and onward. Whereas late-season burn rate increased with summer temperature, no such relationship was found for early-season fires. These results were corroborated by written sources that describe anthropogenic forest fires and slash-and-burn cultivation expanding with the increasing population from the late 1500s and subsequently diminishing due to increasing timber values during 1700–1800s. Whereas human activity strongly influenced the fire regime at multidecadal to centennial scales, it was the interannual variability in climate that triggered large fire events, especially during the pre-1625 period. Prior to 1625, the percentage of years with fire tripled from 7% during cold summers (10–12°C) to 21% during warm summers (14–16°C). Burn rate increased even more, from 0.01% to 1.3% for the same temperature intervals. Ecologically, the post-1625 period is remarkable in such a way that human activity, first by greatly increasing fire frequency and subsequently almost eradicating fires, possibly influenced the fire regime to such an extent that it may be unprecedented for millennia.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Skogbrann har vært en viktig del av Trillemarkas natur- og kulturhistorie. Skal vi som svenskene og finnene gjeninnføre skogbrann i reservater?
Sammendrag
I rapporten undersøkes og diskuteres mulighetene for å forenkle MiS-registreringer i kyststrøk med mye krevende terreng i forbindelse med feltregistreringer. Vi benyttet registreringer av MiS i Landsskogtakseringen og hogststatestikk som grunnlag for vurderingene. Forutsetningene for forenklinger vurderes å være særlig gode på Vestlandet, men også i Trøndelag finnes muligheter for å redusere arbeidet i felt samtidig som de viktigste livsmiljøene blir registrert.
Forfattere
Øyvind M Edvardsen Arne Steffenrem Ragnar Johnskås Øystein Johnsen Tor Myking Harald KvaalenSammendrag
Det er ikke registrert sammendrag
Forfattere
Graham Alan Ormondroyd Gry Alfredsen Raghavalu Thirumalai Durai Prabhakaran Simon F. Curling Bronia K. Stefanowski Morwenna J. Spear Lone RossSammendrag
Microbiological degradation of wood by decay fungi can cause a rapid change in the structural properties of timber which can result in both strength and mass loss. Traditional techniques for the evaluation of decay (e.g. mass loss) lack the sensitivity to evaluate the effects of the very first stages of the decay process. This paper describes the effects of initial brown rot decay, defined by the amount of Poria placenta genomic DNA (gDNA) present in the samples, on the dynamic mechanical properties of the timber. It was found that there is a correlation between the mean storage modulus of the timber and the amount of P. placenta gDNA present, and therefore the level of decay. This shows that using dynamic mechanical analysis is a viable technique that can be used to study initial decay processes.