Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2015

Til dokument

Sammendrag

I 2014 ble det for sjette år på rad samlet inn prøver med antatt opphav fra brunbjørn (Ursus arctos) gjennom det nasjonale overvåkingsprogrammet for rovvilt i Norge. Det ble samlet inn 962 prøver i 2014 (703 ekskrementprøver, 247 hårprøver, 11 vevsprøver og 1 blodprøve), noe som er betydelig lavere antall prøver enn forrige år (1246 prøver i 2013). Av disse prøvene var 60 % positive for brunbjørn, og det ble påvist 136 ulike bjørner, hvorav 54 hunnbjørner og 82 hannbjørner. Dette er en reduksjon sammenlignet med forrige år da det ble påvist 55 hunnbjørner og 93 hannbjørner. I løpet av de siste seks årene har andelen hunnbjørner økt, og i 2014 var andelen økt til 40 %. Beregninger av antall ynglinger i samme periode ligger relativt stabilt på ca. 6 ynglinger. Som tidligere år er forekomsten av brunbjørn i hovedsak konsentrert i fylkene Hedmark (43), Finnmark (34) og Nord-Trøndelag (29). Av de 136 individbestemte bjørnene i Norge i 2014 var 93 individer (68 %) tidligere påvist i Norge, noe som utgjør omtrent samme gjenfunnsandel som forrige år. DNA, brunbjørn, Ursus arctos, DNA profiler, overvåking, Norge, DNA, brown bear, Ursus arctos, DNA profiles, monitoring, Norway

Til dokument

Sammendrag

High-resolution Y-chromosomal markers have been applied to humans and other primates to study population genetics, migration, social structures and reproduction. Y-linked markers allow the direct assessment of the genetic structure and gene flow of uniquely male inherited lineages and may also be useful for wildlife conservation and forensics, but have so far been available only for few wild species. Thus, we have developed two multiplex PCR reactions encompassing nine Y-STR markers identified from the brown bear (Ursus arctos) and tested them on hair, fecal and tissue samples. The multiplex PCR approach was optimized and analyzed for species specificity, sensitivity and stutter- peak ratios. The nine Y-STRs also showed specific STR-fragments for male black bears and male polar bears, while none of the nine markers produced any PCR products when using DNA from female bears or males from 12 other mammals. The multiplex PCR approach in two PCR reactions could be amplified with as low as 0.2 ng template input. Precision was high in DNA templates from hairs, fecal scats and tissues, with standard deviations less than 0.14 and median stutter ratios from 0.04 to 0.63. Among the eight di- and one tetra-nucleotide repeat markers, we detected simple repeat structures in seven of the nine markers with 9–25 repeat units. Allelic variation was found for eight of the nine Y-STRs, with 2–9 alleles for each marker and a total of 36 alleles among 453 male brown bears sampled mainly from Northern Europe. We conclude that the multiplex PCR approach with these nine Y-STRs would provide male bear Y-chromosomal specificity and evidence suited for samples from conservation and wildlife forensics.

Sammendrag

Remediation of soil and groundwater has been attempted using various iron based nanoparticles during more than a decade, but the technology has not been adopted as widely as expected. This is partly due to ongoing work on optimization of the nanoparticles used, as well as their coatings, injection parameters and correct choice of particles according to the pollutants to be treated. Another aspect that has hampered large scale adoption or even testing is the lack of knowledge on possible negative effects of what is perceived a large scale spreading of reactive nanoparticles into the environment. This may potentially cause harm to humans and the environment, including organisms living in soil and neighboring streams, rivers and lakes. Two years ago, the EU project NanoRem (Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment) started a considerable effort in valorizing nanoremediation, and as part of this testing the potential toxicity of particles used and developed during the project. After two years, seven different types of nanoparticles have been tested with a range of standardized and non-standardized tests adapted to nanotoxicological assessments, and results show that most particles are non-toxic at environmentally relevant concentrations (<100 mg/kg or mg/L). In some cases, however, iron nanoparticles have shown toxicity at far lower concentrations, and these effects have not been caused by competition for electron acceptors, as often observed when highly reductive chemicals are tested for biological effects. An overview of the tests used and results obtained will be presented. Also, our strategy for field testing and early results from polluted fields injected with different nanoparticles will be discussed to make some preliminary conclusions on the overall benefit of this technology in terms of environmental protection and risks.