Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Forfattere
Marianne Bechmann Randi Berland Frøseth Synnøve Rivedal Eva Brod Franziska Fischer Till Seehusen Anne Falk ØgaardSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Quantifying the similarities and differences in atmospheric nitrogen (N) deposition between different ecosystems is important to develop effective measures to reduce air pollution and maintain biodiversity. Here we show that the constitution of N deposition differed significantly between a grassland and a desert ecosystem in Northwestern China. Flux of bulk (wet plus part of dry deposition) and dry (gaseous NH3 and NO2) deposition were continuously monitored from 2018 to 2020. The grassland and desert sites had similar amount of total N deposition, being 7.29 and 6.33 kg N ha−1 yr−1, respectively. However, N deposition at the grassland was dominated by the bulk deposition (4.44 kg N ha−1 yr−1, 61% of the total N deposition), whereas that at the desert was dominated by dry deposition (4.20 kg N ha−1 yr−1, 66% of total deposition). The desert had greater ambient concentrations of NH3 (3.66 μg N m−3) and NO2 (1.52 μg N m−3) than the grassland (2.73 μg NH3–N m−3 and 0.72 μg NO2–N m−3). The amount of reduced N deposition (NH4+ and NH3) was around 3 times of that of oxidized N deposition (NO3− and NO2) in both ecosystems. The N deposition rates in both ecosystems have exceeded the critical load for the fragile ecosystems (5–10 kg N ha−1 yr−1), highlighting the importance of reducing N emission sources that are related with anthropogenic disturbance.
Sammendrag
Soil nutrient contents and stoichiometric ratios are determinants for soil biogeochemical cycling and functions. Variable rock fragment contents (RFC) may shape the soil nutrient status and availability in mountain ecosystems. We need to better understand how and why soil nutrients and stoichiometry shift across the RFC gradients. To investigate patterns of soil nutrient stoichiometry and underlying mechanisms in rocky soils, we conducted a field experiment involving four RFCs gradients (0%, 25%, 50% and 75%, V/V) and five vegetation treatments (four indigenous species, Artemisia vestita, Bauhinia brachycarpa, Cotinus szechuanensis and Sophora davidii, plus a non-planted treatment). Soil total carbon (C), total nitrogen (N), total phosphorus (P) and their molar ratios were measured. The contents of soil C, N and P, and C:N, C:P and N:P decreased with increasing RFC in all treatments, despite their trends were inconsistent in certain soil layers. The averages of soil N content significantly increased by 13.8% and 14.8% in C. szechuanensis and S. davidii, respectively. A. vestita and B. brachycarpa had higher soil C:N than C. szechuanensis and S. davidii. Soil nutrients and stoichiometry were positively related to soil water content (SWC) and soil capillary porosity, and negatively to bulk density and soil non-capillary porosity in all vegetation treatments, but varying relationships with biomass of plant components. These results demonstrated negative effect of RFC and discrepant effects of the plants on soil nutrients and stoichiometry. Soil structure, SWC and vegetation were the main drivers of variations in soil nutrient stoichiometry. We further concluded that soil nutrient stoichiometry in rocky soils is shaped by two influencing paths; effects of RFC on soil physical properties (SWC and soil structure) and effects of different vegetations. Our findings advance knowledge and mechanisms of soil nutrient stoichiometry in rocky soils and provide theoretical support for improving and restoring nutrient status in stony regions.
Forfattere
Cornelya KlutschSammendrag
Det er ikke registrert sammendrag
Forfattere
Yi Zhang Yijing Feng Zhonghao Ren Runguo Zuo Tianhui Zhang Yeqing Li Yajing Wang Zhiyang Liu Ziyan Sun Yongming Han Lu Feng Mortaza Aghbashlo Meisam Tabatabaei Junting PanSammendrag
The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3–0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
Forfattere
Thiago Inagaki Angela R. Possinger Steffen A. Schweizer Carsten W. Mueller Carmen Hoeschen Michael J. Zachman Lena F. Kourkoutis Ingrid Kögel-Knabner Johannes LehmannSammendrag
Det er ikke registrert sammendrag
Forfattere
Cornelya KlutschSammendrag
Det er ikke registrert sammendrag
Forfattere
Cornelya KlutschSammendrag
Det er ikke registrert sammendrag
Forfattere
Paul Eric Aspholm Simo Maduna Juho Vuolteenaho Cornelya Klutsch Hallvard Jensen Ida Marie Luna Fløystad Ingrid Helle Søvik Ane-Sofie Bednarczyk Hansen Josefine Bergs Snorre HagenSammendrag
Det er ikke registrert sammendrag