Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

The categorical and qualitative nature of currently available soil structural data along with the lack of a geographically broad dataset have impeded progress in understanding the development of soil structure. In this study, we assembled a soil, climate, and ecological dataset for the USA, and used it to analyze relationships between soil structure (ped type, shape, size, and grade) and exogenous and endogenous variables influencing the development of soil structure. We analyzed a subset of the National Cooperative Soil Survey (NCSS) Soil Characterization database after merging this information with climatological and ecological data. The merged and cleaned dataset contains >4400 observations from approximately 1600 pedons. We found that climate, as an exogenous factor was the most important predictor of ped shape and size. Cold and/or dry climates promoted the development of larger anisotropic peds with rougher surfaces whereas warmer and more humid climates promoted the development of finer equidimensional peds with smoother surfaces. Based on these findings, we argue that climate promotes the development of soil structure along either fragmentation or aggregation pathways. The former pathway is characterized by largely mechanical processes in cold and dry environments, whereas aggregation is promoted by predominately biological and chemical mechanisms found in warmer and wet environments. This connection between climate and the development of soil structure represents a potentially important effect of climate on a morphological property strongly linked to soil hydrology that warrants further investigation with continental-scale soil data.

Til dokument

Sammendrag

Soil particles and bound nutrients that erode from agricultural land may end up in surface waters and cause undesirable changes to the environment. Various measures, among them constructed wetlands have been proposed as mitigation, but their efficiency varies greatly. This work was motivated by the assumption that the induced coagulation of particles may accelerate sedimentation in such wetlands and by that help reduce the amount of material that is lost from the vicinity of the diffuse source. Our specific aim was to laboratory-test the effectiveness of various salt-based coagulants in accelerating the process of sedimentation. We tested the effect of Na+, Mg2+, Ca2+, Fe3+ and Al3+ cations in 10, 20, 40 and 80 mg L-1 doses added to a soil solution in select, soluble forms of their chlorides, sulphates and hydroxides. We mixed such salts with 1 gram of physically dispersed, clay and silt rich (>85% in total) soil material in 500 mL of solution and used time-lapse photography and image analysis to evaluate the progress of sedimentation over 3 hours. We found that 20–40 mg L-1 doses of Mg2+, Ca2+ in their chloride or sulphate forms appeared to provide the best consensus in terms of efficiently accelerating sedimentation using environmentally present and acceptable salts but keeping their dosage to a minimum. Comprehensive in-field efficiency and environmental acceptability testing is warranted prior to any practical implementation, as well as an assessment of small scale economic and large-scale environmental benefits by retaining soil and nutrients at/near the farm.