Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long-term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept-only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species-specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.

Til dokument

Sammendrag

Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal–oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities.

Til dokument

Sammendrag

Understanding how niche-based and neutral processes contribute to the spatial varia-tion in plant–pollinator interactions is central to designing effective pollination con-servation schemes. Such schemes are needed to reverse declines of wild bees and other pollinating insects, and to promote pollination services to wild and cultivated plants. We used data on wild bee interactions with plants belonging to the four tribes Loteae, Trifolieae, Anthemideae and either spring- or summer-flowering Cichorieae, sampled systematically along a 682 km latitudinal gradient to build models that allowed us to 1) predict occurrences of pairwise bee–flower interactions across 115 sampling locations, and 2) estimate the contribution of variables hypothesized to be related to niche-based assembly structuring processes (viz. annual mean temperature, landscape diversity, bee sociality, bee phenology and flower preferences of bees) and neutral processes (viz. regional commonness and dispersal distance to conspecifics). While neutral processes were important predictors of plant–pollinator distributions, niche-based processes were reflected in the contrasting distributions of solitary bee and bumble bees along the temperature gradient, and in the influence of bee flower preferences on the distri-bution of bee species across plant types. In particular, bee flower preferences separated bees into three main groups, albeit with some overlap: visitors to spring-flowering Cichorieae; visitors to Anthemideae and summer-flowering Cichorieae; and visitors to Trifolieae and Loteae. Our findings suggest that both neutral and niche-based pro-cesses are significant contributors to the spatial distribution of plant–pollinator inter-actions so that conservation actions in our region should be directed towards areas: Page 2 of 11near high concentrations of known occurrences of regionally rare bees; in mild climatic conditions; and that are surrounded by heterogenous landscapes. Given the observed niche-based differences, the proportion of functionally distinct plants in flower-mixes could be chosen to target bee species, or guilds, of conservation concern. Keywords: ecological networks, machine learning, plant–pollinator interactions, spatial, wild bees

Sammendrag

Naturtypen artsrik slåttemark er sterkt trua ifølge Norsk rødliste for naturtyper, og ble i 2011 utvalgt naturtype (UN) med en viss beskyttelse gjennom lov om Naturmangfold. På oppdrag for Statsforvalteren i Møre og Romsdal fikk NIBIO i oppdrag å utforme skjøtselsplan for slåttemark på Bæverfjordsetra i Surnadal kommune. Det ble på lokaliteten registrert naturbeitemark med stor verdi.