Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Authors
Heidi Udnes Aamot Simeon Rossmann Erik Lysøe Guro Brodal Birgitte Henriksen Ruth Dill-Macky Carl Gunnar Fossdal Ingerd Skow HofgaardAbstract
We used metabarcoding of ITS 1 and 2 to compare the mycobiome of Norwegian spring wheat seed lots of two commonly grown spring wheat varieties (Mirakel and Zebra) harvested in 2016 and 2017. The seed lots varied in germination and were grouped according to high and low germination (≥90% and <90% germinated seeds, respectively) determined by the ISTA germination method. In addition, the percentage of each seed lot infested by the most important wheat pathogens (Microdochium spp., Fusarium spp., and Parastagonospora nodorum) was determined using a plate-out test on PDA, and species-specific qPCR was used to quantify the amount of DNA of F. avenaceum, F. culmorum, F. graminearum, F. poae, M. majus, M. nivale, and P. nodorum. Our study indicated that the presence of Microdochium was most associated with poor germination (which is as expected), while P. nodorum; although present at relatively high levels, apparently had limited impact on germination. Among the species quantified by qPCR, M. majus was the most abundant, F. avenaceum was detected at low levels, whereas the other fusaria were barely detected. Metabarcoding data indicated a negative association between the presence of the fungal genus Neoascochyta and germination, while Pyrenophora and Alternaria species appeared positively associated with germination. Our results indicated some co-existence patterns between fungal species, including both pathogenic and non-pathogenic species, with some species combinations associated with the germination potential of wheat seed.
Authors
Raghuram Badmi Torstein Tengs May Bente Brurberg Abdelhameed Elameen Yupeng Zhang Lisa Karine Haugland Carl Gunnar Fossdal Timo Hytönen Paal Krokene Tage ThorstensenAbstract
Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in ‘response to biologic stimulus‘, ‘photosynthesis‘ and ‘chlorophyll biosynthesis and metabolism’, differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.
Authors
Sunniva Løwø Simeon Rossmann Marte Persdatter Tangvik Monica Skogen Solveig Haukeland May Bente BrurbergAbstract
No abstract has been registered
Authors
Nina Elisabeth Nagy Hans Ragnar Norli Monica Fongen Runa Berg Østby Inger Heldal Jahn Davik Ari HietalaAbstract
Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree–pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.
Abstract
No abstract has been registered
Abstract
Established invasive alien plant species make it difficult and costly to move and make use of infested soil in public and private construction work. Stationary soil steaming as a non-chemical control method has the potential to disinfect soil masses contaminated with seeds and other propagative plant materials. The outcome can vary depending on steaming temperature and duration. Higher temperatures and longer durations are relatively more efficient but may also have side-effects including change in soil physical and chemical characteristics. Barnyard grass (Echinochloa crus-galli) is among troublesome invasive species in Norway. We have tested different steam duration at 99°C to find the possible lowest effective exposure duration for killing seeds of this annual grass species. Four replications of 40 barnyard grass dry seeds of one population were placed in polypropylene-fleece bags (9*7 cm), moistened for 12 hours, and covered by the soil at a depth of 7 cm in 60*40*20 cm boxes. The boxes with soil and bags were steamed at 99°C for 1.5, 3 and 9 min. The bags including steamed seeds were taken out, opened, placed on soil surface in pots and covered by a thin layer of soil. The pots were placed in greenhouse and watered from below and seed germination was followed for a month. Moistened non-steamed seeds were used as control. It was shown that steaming at 99°C gave 0% germination indicating that 100% of the seeds were killed regardless of exposure duration while in the control seed germination was 100%. Consequently, to achieve an efficacy of 100%, exposure duration of 1.5 min would be enough. Finding the lowest possible steam temperature and exposure duration to get the highest possible seed killing in a seed mixture of different plant species as well as other factors to increase the heat transferability are under investigation. Keywords: Echinochloa crus-galli; Resource recovery; Steaming temperature and duration; Thermal soil disinfection
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered