Plant pathologist with experience on epidemiology of oomycete and fungal pathogens in field vegetables.

Project leader for the Norwegian Agrometeorology network (LMT), the Norwegian decision-support system for pests and diseases (VIPS), and the Nordic-Baltic project SpotIT.

Actively involved in national and international projects with focus on integrated pest management (IPM) and decision support systems (DSS).

Read more


Optimization of produce quality and storage conditions to reduce loss during long-term storage of root vegetables in Norway (OPTIROOT, 2016-2019) Authors: Thomsen, M.G., Indergaard, E., Asalf, B., Heltoft, P., Wold, A.B., Nordskog, B., Guren, G, Dyste, J. & Larsen, H. Author’s affiliation: Key words: carrot, swede, celeriac, storage technology, diseases, physiological disorder, packaging, nutrition Reducing yield loss along the supply chains is important for resource sustainability in vegetable production. Norwegian root vegetables are typically stored 6 to 8 months before consumption, often resulting in 20-30% loss post harvest. In OptiRoot 26 producers, refrigeration-technology companies, sensor developer, grower’s organisation, agricultural advisory service, and four research institutes are cooperating and conducting research to improve storage quality of carrot, swede and celeriac. The research focuses on: i) Fertilizer/Boron deficiency affects the storage quality of root vegetables and amount, methods of application, and timing of boron are studied in swede and celeriac. ii) Interaction between storage conditions/functions and produce quality of the root vegetables through mapping of technical features of 27 storages. The storage conditions recorded are relative humidity, air movement, temperature in boxes and storages, and physical features of storages. In addition, the physiological and health status of the produces are assessed one week before harvest, postharvest and post-storage. The prevalence of fungal diseases or disorders varied from region to region and between storages. iii) Effects of pre-storage wound healing are tested using seven different temperature strategies (direct to 0° C vs. down 0.2° C per day vs. 1° C per day) and low/high humidity in carrot (2016/17/18), celeriac and swede (2017/18/19). Preliminary results show that wound healing reduced loss due to fungal infections in carrot iv) CO2 concentration, temperature and relative humidity were recorded over time inside carrot storage bin liners with different numbers of perforations. An initial screening indicated a positive correlation between number of holes and number of fresh roots. As a post storage method, coating of swede with chitosan oligomers will be tested to inhibit growth of post-harvest pathogens. In conclusion, OptiRoot have gained good progress and promising preliminary results by connecting data on biology and technology for reduction of loss during long-term storage.

To document


Sclerotinia species are important fungal pathogens of a wide range of crops and wild host plants. While the biology and population structure of Sclerotinia sclerotiorum has been well-studied, little information is available for the related species S. subarctica. In this study, Sclerotinia isolates were collected from different crop plants and the wild host Ranuculus ficaria (meadow buttercup) in England, Scotland, and Norway to determine the incidence of Sclerotinia subarctica and examine the population structure of this pathogen for the first time. Incidence was very low in England, comprising only 4.3% of isolates while moderate and high incidence of S. subarctica was identified in Scotland and Norway, comprising 18.3 and 48.0% of isolates respectively. Characterization with eight microsatellite markers identified 75 haplotypes within a total of 157 isolates over the three countries with a few haplotypes in Scotland and Norway sampled at a higher frequency than the rest across multiple locations and host plants. In total, eight microsatellite haplotypes were shared between Scotland and Norway while none were shared with England. Bayesian and principal component analyses revealed common ancestry and clustering of Scottish and Norwegian S. subarctica isolates while English isolates were assigned to a separate population cluster and exhibited low diversity indicative of isolation. Population structure was also examined for S. sclerotiorum isolates from England, Scotland, Norway, and Australia using microsatellite data, including some from a previous study in England. In total, 484 haplotypes were identified within 800 S. sclerotiorum isolates with just 15 shared between England and Scotland and none shared between any other countries. Bayesian and principal component analyses revealed a common ancestry and clustering of the English and Scottish isolates while Norwegian and Australian isolates were assigned to separate clusters. Furthermore, sequencing part of the intergenic spacer (IGS) region of the rRNA gene resulted in 26 IGS haplotypes within 870 S. sclerotiorum isolates, nine of which had not been previously identified and two of which were also widely distributed across different countries. S. subarctica therefore has a multiclonal population structure similar to S. sclerotiorum, but has a different ancestry and distribution across England, Scotland, and Norway.


High concentrations of the mycotoxin deoxynivalenol (DON), produced by Fusarium graminearum have occurred frequently in Norwegian oats recently. Early prediction of DON levels is important for farmers, authorities and the Cereal Industry. In this study, the main weather factors influencing mycotoxin accumulation were identified and two models to predict the risk of DON in oat grains in Norway were developed: (1) as a warning system for farmers to decide if and when to treat with fungicide, and (2) for authorities and industry to use at harvest to identify potential food safety problems. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). A mathematical model was developed and used to estimate phenology windows of growth stages in oats (tillering, flowering etc.). Weather summarisations were then calculated within these windows, and the Spearman rank correlation factor calculated between DON-contamination in oats at harvest and the weather summarisations for each phenological window. DON contamination was most clearly associated with the weather conditions around flowering and close to harvest. Warm, rainy and humid weather during and around flowering increased the risk of DON accumulation in oats, as did dry periods during germination/seedling growth and tillering. Prior to harvest, warm and humid weather conditions followed by cool and dry conditions were associated with a decreased risk of DON accumulation. A prediction model, including only pre-flowering weather conditions, adequately forecasted risk of DON contamination in oat, and can aid in decisions about fungicide treatments.


Norwegian field production of lettuce has increased considerably since the early 1990s. Disease problems rarely required fungicide applications before 1996, when lettuce downy mildew (Bremia lactucae) caused severe losses. From 2002 to 2004, surveys were conducted to identify fungal diseases in Buskerud, Vestfold and Ostfold counties in the south-east and Rogaland County in the south-west, representing the main lettuce production regions of Norway. The distribution and incidence of B. lactucae was highly variable, but this pathogen was the most important due to the destructive nature of uncontrolled epidemics. Septoria lactucae caused severe damage, but was found in only one field. Sclerotinia sclerotiorum was the most widespread pathogen, found in 32% of the fields, but usually affecting less than 10% of the plants. Pythium tracheiphilum was reported from 33% of the fields in south-east Norway, but was not found in the south-west. Disease incidence was usually less than 5%, and a disease incidence of more than 10% was reported in one field only. Other pathogens of potential economic importance in Norwegian lettuce fields are Alternaria spp., Botrytis cinerea and Rhizoctonia solani, although they were sporadically distributed in relatively few fields in this survey.