Roger Holten
Research Scientist
Attachments
CVBiography
I have a Master's degree in biotechnology/environmental microbiology from the Agricultural University of Norway (1995-2000) in Ås, now Norwegian University of Life Sceinces, NMBU. My Master thesis was about bioremediation of PCB contaminated soil by using genetically modified bacteria (Pseudomonas putida). After graduation I worked as an assistant professor at the University College of Telemark for a short period, teaching (among other things) basic toxicology and physiology. Later I worked for about 14 years for the Agricultural Inspection Service/Norwegian Food Safety Authority, working with environmental exposure assessment/modelling and risk assessment of plant protection products/pesticides. In August 2015 i started a PhD (within the Smartcrop project) here at NIBIO and the thesis was apporved in March and defended in May 2019. From 1. January 2019 I have a permanent position at NIBIO as a Researcher at the Department of Pesticides and Natural Products Chemistry. Among other things, I will be leading several projects financed by the Action plan for the sustainable use of pesticides 2016-2020; "The effect of vegetated buffer zones runoff of pesticides", "Risk tables for evaluating the risk for pesticide leaching", "Evaluation of the Norwegian surface water runoff scenarios", all of which are to be finalized in 2021/22. Furthermore, I will lead the projects "Updating the WISPE model and the Norwegian surface water runoff scenarios" and "Transport of pesticides in vegetated buffer zones with macroporous soil". Part from that I participate in other bigger or smaller projects in which my role is to use different exposure models to evaluate the risk of leaching, surface runoff or persistence of pesticides in soil.
Authors
Roger HoltenAbstract
No abstract has been registered
Abstract
Field and laboratory studies show increased leaching of pesticides through macropores in frozen soil. Fast macropore flow has been shown to reduce the influence of pesticide properties on leaching, but data on these processes are scarce. The objective of this study was to investigate the effect of soil freezing and thawing on transport of pesticides with a range of soil sorption coefficients (Kf). To do this we conducted a soil column study to quantify the transport of bromide and five pesticides (2-methyl-4-chlorophenoxyacetic acid, clomazone, boscalid, propiconazole, and diflufenican). Intact topsoil and subsoil columns from two agricultural soils (silt and loam) in southeastern Norway were used in this experiment, and pesticides were applied to the soil surface in all columns. Half the columns were then frozen (−3°C), and the other half were left unfrozen (4°C). Columns were subjected to repeated irrigation events where 25 mm of rainwater was applied during 5 h at each event. Irrigations were followed by 14-d periods of freezing or refrigeration. Percolate was collected and analyzed for pesticides and bromide. Pesticide leaching was up to five orders of magnitude larger from frozen than unfrozen columns. Early breakthrough (<<1 pore volume) of high concentrations was observed for pesticides in frozen columns, indicating that leaching was dominated by preferential flow. The rank order in pesticide leaching observed in this study corresponded to the rank order of mean Kf values for the pesticides, and the results suggest that sorption plays a role in determining leaching losses even in frozen soil.
Authors
Roger Holten Frederik Bøe Marit Almvik Sheela Katuwal Marianne Stenrød Mats Larsbo Nicholas Jarvis Ole Martin EkloAbstract
Limited knowledge and experimental data exist on pesticide leaching through partially frozen soil. The objective of this study was to better understand the complex processes of freezing and thawing and the effects these processes have on water flow and pesticide transport through soil. To achieve this we conducted a soil column irrigation experiment to quantify the transport of a non-reactive tracer and the herbicide MCPA in partially frozen soil. In total 40 intact topsoil and subsoil columns from two agricultural fields with contrasting soil types (silt and loam) in South-East Norway were used in this experiment. MCPA and bromide were applied on top of all columns. Half the columns were then frozen at −3 °C while the other half of the columns were stored at +4 °C. Columns were then subjected to repeated irrigation events at a rate of 5 mm artificial rainwater for 5 h at each event. Each irrigation was followed by 14-day periods of freezing or refrigeration. Percolate was collected and analysed for MCPA and bromide. The results show that nearly 100% more MCPA leached from frozen than unfrozen topsoil columns of Hov silt and Kroer loam soils. Leaching patterns of bromide and MCPA were very similar in frozen columns with high concentrations and clear peaks early in the irrigation process, and with lower concentrations leaching at later stages. Hardly any MCPA leached from unfrozen topsoil columns (0.4–0.5% of applied amount) and concentrations were very low. Bromide showed a different flow pattern indicating a more uniform advective-dispersive transport process in the unfrozen columns with higher con- centrations leaching but without clear concentration peaks. This study documents that pesticides can be pre- ferentially transported through soil macropores at relatively high concentrations in partially frozen soil. These findings indicate, that monitoring programs should include sampling during snow melt or early spring in areas were soil frost is common as this period could imply exposure peaks in groundwater or surface water.
Abstract
No abstract has been registered
Authors
Marianne Stenrød Kathinka Lang Marit Almvik Roger Holten Agnethe Christiansen Xingang Liu Qiu JingAbstract
To ensure compliance with food safety regulations, monitoring programs and reliable analytical methods to detect relevant chemical pollutants in food and the environment are key instruments. Pesticides are an important part of pest management in agriculture to sustain and increase crop yields and control post-harvest decay, while pesticide residues in food may pose a risk to human health. Thus, the levels of pesticide residues in food must be controlled and should align with Maximum Residue Levels regulations to ensure food safety. Food safety monitoring programs and analytical methods for pesticide residues and metabolites are well developed. Future developments to ensure food safety must include the increased awareness and improved regulatory framework to meet the challenges with natural toxins, emerging contaminants, novel biopesticides, and antimicrobial resistance in food and the environment. The reality of a complex mixture of pollutants, natural toxins, and their metabolites potentially occurring in food and the environment implies the necessity to consider combined effects of chemicals in risk assessment. Here, we present challenges, monitoring efforts, and future perspectives for chemical food safety focused on the importance of current developments in high-resolution mass spectrometry (HRMS) technologies to meet the needs in food safety and environmental monitoring.
Abstract
No abstract has been registered