Biography

My current work is focused on weed biology and weed management related to:

  • grasslands
  • forage crops
  • lawns in urban green areas (including golf courses) 
  • fruit and berries

I also work with management of invasive alien plant species and herbicide resistance in weeds
 

Read more

Abstract

Eradication of alien invasive species in the soil with steam as an alternative to chemical fumigation may allow contaminated soil to be reused. We have investigated steam disinfestation of soil to combat invasive plant species in three experiments including different temperatures and exposure durations using a prototype stationary soil-steaming device. The experiments included effects on seed germination of bigleaf lupine (Lupinus polyphyllus Lindl.), ornamental jewelweed (Impatiens glandulifera Royle), and wild oat (Avena fatua L.; one population from Poland and one from Norway), as well as effects on sprouting rhizome fragments of Canada goldenrod (Solidago canadensis L.) and Bohemian knotweed (Reynoutria x bohemica Chrtek & Chrtková). In Experiment 1, we tested four different soil temperatures of 64, 75, 79, and 98 C with an exposure duration of 90 s. In Experiments 2 and 3, we tested exposure durations of 30, 90, and 180 s and 90, 180, and 540 s, respectively, at 98 C. Seed pretreatment of 14 d cooling for L. polyphyllus and I. glandulifera, no seed pretreatment and 12-h moistening for A. fatua populations, and 5- and 10-cm cutting size for R. x bohemica were applied. Our results showed germination/sprouting was inhibited at 75 C for I. glandulifera (for 90 s) and 98 C for the other species; however, longer exposure duration was needed for L. polyphyllus. While 30 s at 98 C was enough to kill A. fatua seeds and S. canadensis and R. x bohemica rhizome fragments, 180-s exposure duration was needed to kill L. polyphyllus seeds. The results showed promising control levels of invasive plant propagules in contaminated soil by steaming, supporting the steam treatment method as a potential way of disinfecting soil to prevent dispersal of invasive species.

Abstract

The abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) has increased in coastal grasslands in Norway over recent decades, and their spread has coincided with increased precipitation in the region. Especially in water‐saturated, peaty soils, it appears from field observations that productive grasses cannot compete effectively with such rapidly growing rush plants. In autumn–winters of 2012–2013 and 2013–2014, a four‐factor, randomised block greenhouse experiment was performed to investigate the effect of different soil moisture regimes and organic matter contents on competition between these rush species and smooth meadow‐grass (Poa pratensis). The rush species were grown in monoculture and in competition with the meadow‐grass, using the equivalent of full and half the recommended seed rate for the latter. After about three months, above‐ and below‐ground dry matter was measured. J. effusus had more vigorous growth, producing on average 23–40% greater biomass in both fractions than J. conglomeratus. The competitive ability of both rush species declined with decreasing soil moisture; at the lowest levels of soil moisture, growth reductions were up to 93% in J. conglomeratus and 74% in J. effusus. Increasing water level in peat–sand mixture decreased competivitiveness of meadow‐grass, while pure peat, when moist, completely impeded its below‐ground development. These results show that control of rush plants through management may only be achieved if basic soil limitations have been resolved.

Abstract

Increasing abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) in pastures and meadows in western Norway has caused reductions in forage yield and quality in recent decades. Understanding plant development and regrowth following cutting is essential in devising cost-effective means to control rushes. In a field experiment in western Norway, we investigated development of above- and below-ground fractions of rush from seedlings to three-year-old plants, including the impact on vigour of disturbing growth by different cutting frequencies during the period 2009–2012. Each year, the plants were exposed to one or two annual cuts or left untreated and five destructive samplings were performed from March to early December. Juncus effusus showed significantly more vigorous growth than Juncus conglomeratus in the last two years of the study period. The above-ground:below-ground biomass ratio of both species increased mainly in spring and early summer and was reduced in late summer and autumn. Removal of aerial shoots also reduced the below-ground fraction of both species. One annual cut in July effectively reduced biomass production in both species by 30–82%, which was only a slightly smaller reduction than with two annual cuts, in June and August. Mechanical control measures such as cutting can thus effectively reduce rush vigour when performed late in the growing season.