Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Pandora neoaphidis is a common entomopathogenic fungus on Sitobion avenae, which is an important aphid pest on cereals in Europe. Pandora neoaphidis is known to cause epizootics (i.e. an unusually high prevalence of infected hosts) and the rapid collapse of aphid populations. We developed a weather-driven mechanistic model of the winter wheat-S. avenae-P. neoaphidis system to simulate the dynamics from spring to harvest. Aphid immigration was fixed at a rate that would lead to a pest outbreak, if not controlled by the fungus. We estimated the biocontrol efficacy by running pair-wise simulations, one with and one without the fungus. Uncertainty in model parameters and variation in weather was included, resulting in a range of simulation outcomes, and a global sensitivity analysis was performed. We identified two key understudied parameters that require more extensive experimental data collection to better assess the fungus biocontrol, namely the fungus transmission efficiency and the decay of cadaver, which defines the time window for possible disease transmission. The parameters with the largest influence on the improvement in yield were the weather, the lethal time of exposed aphids, the fungus transmission efficiency, and the humidity threshold for fungus development, while the fungus inoculum in the chosen range (between 10 and 70% of immigrant aphids carrying the fungus) was less influential. The model suggests that epizootics occurring early, around Zadoks growth stage (GS) 61, would lead to successful biocontrol, while later epizootics (GS 73) were a necessary but insufficient condition for success. These model predictions were based on the prevalence of cadavers only, not of exposed (i.e. infected but yet non-symptomatic) aphids, which in practice would be costly to monitor. The model suggests that practical Integrated Pest Management could thus benefit from including the cadavers prevalence in a monitoring program. We argue for further research to experimentally estimate these cadaver thresholds.

Abstract

Temperature and humidity were measured in 28 vegetable stores and corelated to quality of stored vegetable through two storage seasons. The vegetables swede, carrot and celeriac were grown at one site within each of the four regions in Norway ROG, MID, INN and OSL, respectively. After harvesting, the vegetables were weighed and visually assessed for any injuries or diseases and stored in different stores within the same region as grown. Four bags dug down in four storage bins in each store. Temperature and humidity were logged in each bag as well as on the top of each bin and on wall of the storage. In general, we found significant differences in the storage quality between the different storages as well as between regions. Correlating data on quality with temperature data shows for carrot a tendency to an increase in the proportion of fresh roots and reduction in incidence of tip-rot by an increased average temperature during the first two weeks of storage. This corresponds to results from tested various wound healing treatments. An increase in accumulated temperature during the storage period showed a tendency to increase the emergence of tip-rot and reduce the proportion of fresh roots. For celeriac, the effect of temperature varied between years, possibly due to a large difference in quality in the two test years, and it was difficult to draw any conclusion. In swede, the results suggest that a decrease in temperature in the first two weeks of storage increased the risk of the symptom shown as black veins in the phloem. Nutrient status was found to be a possibly predisposing factor for reduced storage quality in celeriac. Balance of boron (B) to calcium (Ca) and zinc (Zn) were studied in two sites. Highest incidence of brown spots and lowest proportion of fresh roots following storage was found in celeriac with the lowest Ca/B ratio in leaves, lowest content of Zn in the leaves and roots and lowest soil pH.

Abstract

Weeds affect crop yield and quality due to competition for resources. In order to reduce the risk of yield losses due to weeds, herbicides or non-chemical measures are applied. Weeds, especially creeping perennial species, are generally distributed in patches within arable fields. Hence, instead of applying control measures uniformly, precision weeding or site-specific weed management (SSWM) is highly recommended. Unmanned aerial vehicle (UAV) imaging is known for wide area coverage and flexible operation frequency, making it a potential solution to generate weed maps at a reasonable cost. Efficient weed mapping algorithms need to be developed together with UAV imagery to facilitate SSWM. Different machine learning (ML) approaches have been developed for image-based weed mapping, either classical ML models or the more up-to-date deep learning (DL) models taking full advantage of parallel computation on a GPU (graphics processing unit). Attention-based transformer DL models, which have seen a recent boom, are expected to overtake classical convolutional neural network (CNN) DL models. This inspired us to develop a transformer DL model for segmenting weeds, cereal crops, and ‘other’ in low-resolution RGB UAV imagery (about 33 mm ground sampling distance, g.s.d.) captured after the cereal crop had turned yellow. Images were acquired during three years in 15 fields with three cereal species (Triticum aestivum, Hordeum vulgare, and Avena sativa) and various weed flora dominated by creeping perennials (mainly Cirsium arvense and Elymus repens). The performance of our transformer model, 1Dtransformer, was evaluated through comparison with a classical DL model, 1DCNN, and two classical ML methods, i.e., random forest (RF) and k-nearest neighbor (KNN). The transformer model showed the best performance with an overall accuracy of 98.694% on pixels set aside for validation. It also agreed best and relatively well with ground reference data on total weed coverage, R2 = 0.598. In this study, we showed the outstanding performance and robustness of a 1Dtransformer model for weed mapping based on UAV imagery for the first time. The model can be used to obtain weed maps in cereals fields known to be infested by perennial weeds. These maps can be used as basis for the generation of prescription maps for SSWM, either pre-harvest, post-harvest, or in the next crop, by applying herbicides or non-chemical measures.

Abstract

Appropriate weed control measures during the renewal phase of temporary grasslands are critical to ensure high yields during the whole grassland lifecycle. The aim of this study was to determine which integrated grassland renewal strategy can most effectively control annual weeds in the sowing year and delay perennial weed re-establishment. Four split-plot trials were established at three sites dominated by Rumex spp. along a south-north gradient in Norway. The annual and perennial weed abundance was recorded during the sowing year and two or three production years. Main plots tested seven renewal strategies: 1. Spring plowing, 2. Spring plowing+companion crop (CC), 3. Summer cut+plowing, 4. Summer glyphosate+plowing, 5. Summer glyphosate+harrowing, 6. Late spring glyphosate+plowing, 7. Fall glyphosate+spring plowing+CC. Strategies 1–4 were tested in all four trials, strategy 5 in three trials, strategy 6 in two trials and strategy 7 in one trial. Plowing was performed at 20–25 cm depth, rotary harrowing at 15 cm depth, and glyphosate was applied at 2160 g a.i. ha-1. CC was spring barley (Hordeum vulgare). Subplots tested selective herbicide spraying (yes/no) in the sowing year. Results showed that effects of renewal strategies were often site-specific and differed between the sowing year and production years. Spring renewal resulted in higher perennial weed abundance than summer renewal in two out of four trials (by 3 and 12 percentage points, over all production years), and glyphosate followed by harrowing drastically increased Rumex spp. in one out of three trials (by 18 percentage points over all production years). CCs only significantly reduced perennial weed abundance in one trial (by 8 percentage points over all production years). In comparison, the selective herbicides had a strong effect on annual and perennial weeds in the sowing year in all trials. Selective herbicides reduced the weed cover from 32% to 7% cover, and averaged over the production years and sites, the perennial weed biomass fraction was 6 percentage points lower where herbicides had been applied. We conclude that while the tested renewal strategies provided variable and site-specific perennial weed control, selective herbicides were effective at controlling Rumex spp. and other perennial dicot weeds in the first two production years.

2022

Abstract

We used metabarcoding of ITS 1 and 2 to compare the mycobiome of Norwegian spring wheat seed lots of two commonly grown spring wheat varieties (Mirakel and Zebra) harvested in 2016 and 2017. The seed lots varied in germination and were grouped according to high and low germination (≥90% and <90% germinated seeds, respectively) determined by the ISTA germination method. In addition, the percentage of each seed lot infested by the most important wheat pathogens (Microdochium spp., Fusarium spp., and Parastagonospora nodorum) was determined using a plate-out test on PDA, and species-specific qPCR was used to quantify the amount of DNA of F. avenaceum, F. culmorum, F. graminearum, F. poae, M. majus, M. nivale, and P. nodorum. Our study indicated that the presence of Microdochium was most associated with poor germination (which is as expected), while P. nodorum; although present at relatively high levels, apparently had limited impact on germination. Among the species quantified by qPCR, M. majus was the most abundant, F. avenaceum was detected at low levels, whereas the other fusaria were barely detected. Metabarcoding data indicated a negative association between the presence of the fungal genus Neoascochyta and germination, while Pyrenophora and Alternaria species appeared positively associated with germination. Our results indicated some co-existence patterns between fungal species, including both pathogenic and non-pathogenic species, with some species combinations associated with the germination potential of wheat seed.

To document

Abstract

Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in ‘response to biologic stimulus‘, ‘photosynthesis‘ and ‘chlorophyll biosynthesis and metabolism’, differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.