Anne Kjersti Bakken
Research Professor
(+47) 415 53 952
anne.kjersti.bakken@nibio.no
Place
Trondheim
Visiting address
Klæbuveien 153, bygg C 1.etasje, 7031 Trondheim
Abstract
Ensiling is a common mode of preservation of animal feed. In this process, the feed undergoes lactic acid fermentation in an anaerobic environment, which decreases pH and inhibits degradation of the feed and its nutritive value. Common silos include top loaded tower silos, side loaded bunker silos (also called horizontal silos), underground pit and trench silos, and bales and tubes wrapped in plastic film. Previous studies have revealed that the type of silo often have an impact on silage properties and feed value, but these effects can vary between silage materials. Silage density is another key factor for silage nutritive value and losses. Generally, high density results in smaller losses than low density, both in bunker silos and bales, but the density effect can also be influenced by properties of the ensiled material. The objectives of this literature review were to identify factors and conditions that can modify the effect of i) silage density, and ii) silo type on dry matter losses, leaching of nutrients, fermentation characteristics, silage feed value and mycotoxins contamination. A systematic literature search was carried out in in the Web of Science core collection platform of databases. Most studies showed positive correlations between silage density, and fermentation and feed value, and negative correlations with DM losses. The majority of these studies were conducted at laboratory scale and there was also a great variation in the magnitude of these effects. Further investigations at farm scale may provide more information about the consistency of these effects across experimental scales. The silo type comparisons indicate that silage bales, bags and tubes can be favourable for silage quality and dry matter preservation compared to bunker silos, but information on silo type effects on important crops such as maize is missing.
Abstract
Climate change with fluctuations in weather patterns, environmental concerns, and increased costs of mineral fertilizers all demand adjustment of nitrogen (N) used for forage production. The aim of the study was to investigate the effects of splitting N application in spring on dry-matter (DM) yield, crude protein (CP) content and protein quality of timothy-meadow fescue leys. The trial was conducted during two years at three locations (Kvithamar and Særheim, Norway and Länghem, Sweden). Split N application with 60 kg N ha–1 at onset of grass growth in April and 50 kg N ha–1 in May resulted in the same DM yields and CP concentrations as a single application of 110 kg N ha–1 in April in Kvithamar the first year and Særheim both years. In Länghem both years and for Kvithamar in the second year, a late application two weeks before first cut gave less DM yield than the single full application in April. Split application did not affect the contents of nonprotein N or nitrate.
Abstract
Appropriate weed control measures during the renewal phase of temporary grasslands are critical to ensure high yields during the whole grassland lifecycle. The aim of this study was to determine which integrated grassland renewal strategy can most effectively control annual weeds in the sowing year and delay perennial weed re-establishment. Four split-plot trials were established at three sites dominated by Rumex spp. along a south-north gradient in Norway. The annual and perennial weed abundance was recorded during the sowing year and two or three production years. Main plots tested seven renewal strategies: 1. Spring plowing, 2. Spring plowing+companion crop (CC), 3. Summer cut+plowing, 4. Summer glyphosate+plowing, 5. Summer glyphosate+harrowing, 6. Late spring glyphosate+plowing, 7. Fall glyphosate+spring plowing+CC. Strategies 1–4 were tested in all four trials, strategy 5 in three trials, strategy 6 in two trials and strategy 7 in one trial. Plowing was performed at 20–25 cm depth, rotary harrowing at 15 cm depth, and glyphosate was applied at 2160 g a.i. ha-1. CC was spring barley (Hordeum vulgare). Subplots tested selective herbicide spraying (yes/no) in the sowing year. Results showed that effects of renewal strategies were often site-specific and differed between the sowing year and production years. Spring renewal resulted in higher perennial weed abundance than summer renewal in two out of four trials (by 3 and 12 percentage points, over all production years), and glyphosate followed by harrowing drastically increased Rumex spp. in one out of three trials (by 18 percentage points over all production years). CCs only significantly reduced perennial weed abundance in one trial (by 8 percentage points over all production years). In comparison, the selective herbicides had a strong effect on annual and perennial weeds in the sowing year in all trials. Selective herbicides reduced the weed cover from 32% to 7% cover, and averaged over the production years and sites, the perennial weed biomass fraction was 6 percentage points lower where herbicides had been applied. We conclude that while the tested renewal strategies provided variable and site-specific perennial weed control, selective herbicides were effective at controlling Rumex spp. and other perennial dicot weeds in the first two production years.