Ingunn Øvsthus

Research Scientist

(+47) 482 07 250
ingunn.ovsthus@nibio.no

Place
Ullensvang

Visiting address
NIBIO Ullensvang, NO-5781 Lofthus

To document

Abstract

Our investigation delves into the previously uncharted territory of cider composition from Norway. This study aimed to obtain an overview of the qualitative and quantitative compositions of general chemical parameters, polyphenols (individual and total expressed as gallic acids equivalents), selected esters, and selected C6-alcohols in ciders with the PDO label Cider from Hardanger. In total, 45 juice and cider samples from the fermentation process were collected from 10 cider producers in Hardanger in 2019, 2020, and 2021. Individual sugars, acids, ethanol, and 13 individual phenols were quantified using HPLC-UV/RI. Seven ethyl esters of fatty acids, four ethyl esters of branched fatty acids, ten acetate esters, two ethyl esters of hydroxycinnamic acids, and four C6-alcohols were quantified using HS-SPME-GC-MS. For samples of single cultivars (‘Aroma’, ‘Discovery’, ‘Gravenstein’, and ‘Summerred’), the sum of the measured individual polyphenols in the samples ranges, on average, from 79 to 289 mg L−1 (the lowest for ‘Summerred’ and highest for ‘Discovery’ and ‘Gravenstein’). Chlorogenic acid was the most abundant polyphenol in all samples. Ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl isobutyrate, ethyl 2-methylbutyrate, isoamyl acetate, and hexanol were present at concentrations above the odour threshold and contributed to the fruity flavour of the Cider from Hardanger.

To document

Abstract

Norwegian apple ciders have recently gained attention at the levels of international competitiveness. Accordingly, a comparative study on the chemical composition of selected Norwegian and French apple ciders was conducted to gain knowledge on what ubiquitous chemical parameters make the Norwegian ciders different from ciders from well-established producing regions. A total of 43 ciders, 24 Norwegian and 19 French, in the category of acidic dominant ciders, were included in the study. Ethanol, individual sugars and organic acids, pH, total phenols, aroma compounds including esters, C6-alcohols, volatile phenols and terpenoids, were analysed. Norwegian ciders showed higher contents in ethanol, malic and citric acids, whereas total phenols, pH, glucose, and fructose were higher in French counterparts. Regarding the aromatic profile, no significant differences were observed for C6-alcohols. In contrast, differences were more expressed in the case of esters and volatile phenols. Norwegian ciders were characterised by higher average concentration for all the groups of esters, with the most important differences measured for higher alcohol acetates. Norwegian ciders also displayed higher contents of 4-vinylphenol and 4-vinylguaiacol while French ciders contained substantially higher levels of 4-ethylphenol and 4-ethylguaiacol. These results are in mutual correlation with the empirical observation reporting Norwegian apple ciders as more acidic, alcoholic and with lighter body but fruitier profile. Whereas French ciders are often perceived with more structure and animalistic profile.

Abstract

https://ehc.usamv.ro/wp-content/uploads/2024/05/S10-Book-of-Abstracts.pdf The mid-early ripening cultivar, 'Summerred‘, is popular among consumers and widely grown in Norway. However, 'Summerred‘ fruit is prone to rapid softening and development of senescence-related disorders, especially senescent breakdown. Calcium can have a significant role in maintaining firmness and delaying senescence of fruits. In a two-year study, foliar application of calcium chloride (CaCl2) was conducted six times, with varying weather conditions between the growing seasons. Fruit was harvested at optimal commercial maturity and stored at 4 °C for either six or nine weeks, followed by simulated shelf-life conditions at 20 °C. Ethylene levels were monitored during storage to detect ripening discrepancies. At harvest, CaCl2-treated fruit exhibited significantly lower ethylene production compared to untreated fruit, although no differences were observed during the end of the storage period. Senescent breakdown showed significant variability between the two seasons, with an incidence of up to 15 % in the first season and nearly no incidence in the second season. Senescent breakdown increased with storage length but was not affected by foliar CaCl2 application. Real-time PCR analysis of fruit flesh samples revealed increased expression of polygalacturonase and β-galactosidases genes after storage, indicating their involvement in apple softening. Notably, there were no differences in gene expression between CaCl2-treated and untreated fruit after storage. Expression patterns of genes involved in ethylene biosynthesis at harvest were different between the two seasons. Higher expression was observed in the year when more disorder development occurred, indicating advanced maturity at harvest. There were no significant differences in Streif index between the two years.