Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

The SiEUGreen project was implemented to enhance the EU-China cooperation in promoting urban agriculture (UA) for food security, resource efficiency and smart, resilient cities through the development of showcases in selected European and Chinese urban and peri-urban areas. In the last four years, SiEUGreen project assembled numerous existing and/or unexploited technologies for the first time to facilitate the development of the state-of-the-art UA model. In light of this, there is natural interest in whether SiEUGreen’s efforts resulted in meaningful impacts. Hence, the objective of this report is to determine the multi-dimensional impacts of the showcases developed and implemented by the SiEUGreen project. The analysis of the impact of the technologies or showcases implemented by the SIEUGreen mainly relies on the data obtained from other relevant tasks and deliverables within the project (e.g., showcase deployment, market analysis, and deliverables related to technology deployment). The willingness to pay studies use NIBIO’s existing data from a contingent valuation survey for willingness to pay of Oslo residents towards food produced using the target technologies. The report is presented as follows: • Section 2 gives an overview of the implementation status of the SiEUGreen technologies with the current technology readiness levels (TRLs); • Section 3 discusses the impacts in terms of land use, food security, environmental resilience and resource efficiency, and societal inclusion; • Section 4 focuses on willingness to pay studies for UA-related technologies; • Section 5 discusses the results and impact pathways; and • Section 6 provides the lessons learned and recommendations. Overall, our assessment indicates that SiEUGreen has provided a wide-ranging array of impacts in multiple dimensions: land-use, food security, environmental resilience and resource efficiency, and societal inclusion.

To document

Abstract

Key words: apiculture, biological control, Norwegian Environment Agency, Norwegian Scientific Committee for Food and Environment, predatory mites, risk assessment, varroa Introduction The Norwegian Environment Agency (NEA) have asked the Norwegian Scientific Committee for Food and Environment for an assessment of adverse impacts on biodiversity concerning import and release of the predatory mite Stratiolaelaps scimitus as measure against varroa mites (Varroa destructor) in apiaries. The predatory mite is already in use in Norwegian greenhouses and polytunnels as a biological control agent against dark-winged fungus gnats in a various of plant cultures. The NEA has received an application for a new type of use: to combat varroa mites in apiaries. Background Varroa destructor (the varroa mite) is a species of parasitic mite that feeds externally on honeybees; it is considered one of the major threats to beekeeping world-wide due to its parasitic behaviour and because it acts as a vector for several viral and bacterial bee pathogens. Beekeepers in North America have begun experimenting with introducing Stratiolaelaps scimitus, a commercially available predaceous mite originally used for biocontrol in greenhouses and polytunnels, to control varroa mites, and several studies on the use of the mite in this context have been published recently. The Norwegian Environment Agency has asked VKM to assess the risk to biological diversity in Norway associated with this new use of S. scimitus, and to assess the effects of climate change on any risks that are proposed. Stratiolaelaps scimitus is a tiny (0.5 mm), soil-dwelling predaceous mite that in nature feeds on a wide variety of soil invertebrates, including fly larvae, nematodes, nymphs of thrips, potworms (oligochaetes), springtails, and other mites. For over three decades, Stratiolaelaps scimitus has been produced commercially and the species is now used globally for biological control. The mite is applied to control a wide variety of organisms harmful to food production or to the production of ornamental plants, but especially to combat infestations of fungus gnat larvae, spider mites, flower thrips, and certain plant-feeding nematodes. The species is already used as a biocontrol agent in Norway in greenhouses, open plastic polytunnels used for protecting crops, and in various indoor plantings and fungiculture. Methods VKM established a project group with expertise in entomology, invasion ecology, honeybee behaviour and ecology, and risk analysis of biological control agents. The group conducted systematic literature searches and scrutinized the relevant literature that was found. In the absence of Norwegian studies, VKM relied on literature from other countries. Results and conclusions This VKM assessment concludes with medium confidence that introducing S. scimitus for use in beehives would not significantly increase the probability of establishment and spread of S. scimitus above that of its current use. We point out that there is no evidence that continuous use of S. scimitus in Norway, over decades, has led to its establishment outside of enclosures, including open polytunnels. The optimal temperature for development and reproduction is far higher than what is normally observed in Norway (~28 °C). Although lethal temperature has been reported to be as low as –5.2 °C, we still conclude that S. scimitus would not be able to establish permanent populations in Norway, not even in the southern part of the country as such temperatures are expected to occur in some years throughout the country. Future climate change is not believed to alter this conclusion, since periods with lethally cold temperatures are expected to still occur in the future.

2022

Abstract

The visual impacts of landscape change are important for how people perceive landscapes and whether they consider changes to be positive or negative. Landscape photographs and photographs of landscape elements may capture information about the visual qualities of landscapes and can also be used to illustrate, and even to quantify, how these visual qualities change over time. We developed a methodology for a monitoring scheme, based on taking photographs from exactly the same locations at different points in time. We tested two methods: one where fieldworkers chose freely the location and direction of photographs, and one where photo locations and four out of five directions were predefined. We found that the method using predefined locations provided a representative sample of the visual qualities present in the landscape and was relatively person-independent but missed rare landscape components. The method using free selection of photo locations and directions captured rarities, but the content of the photos varied from photographer to photographer. Considering the strengths and weaknesses of the two approaches, we recommend a method that combines aspects of both when establishing a monitoring scheme based on repeat photography, with predefined locations to ensure that the entire area is covered, and additional freely chosen photo locations to capture special subject matter that would otherwise be missed.